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To the student

It was six summers ago that I received a phone call from Richard Rusczyk inviting
me to take part in an exciting venture. He wanted to create a mathematics
competition for high school students and wondered if I would like to join Sandor
Lehoczky and himself in a partnership to produce this contest. So far they had
named the partnership: Greater Testing Concepts. I thought it was a crazy idea.

Within a week I called Richard back.

“I’ve been playing around with this neat iterative process lately which pro-
duces the most fantastic picture, it’s called the Mandelbrot set, named after
Benoit Mandelbrot who discovered it. Maybe we could call the contest the Man-
delbrot Competition and use the set as the logo.” 1 was hooked.

In a flurry of phone calls the basic structure of the competition rapidly took
shape. Richard wrote Benoit Mandelbrot and obtained permission to use his
name for our contest. He must have been flattered, because he agreed; we still
have his response stored with other Mandelbrot memorabilia. I suggested a team
test in which students would write out proofs rather than fill in blanks. This
idea was greeted enthusiastically by the newly elected Greater Testing Concepts
board of managers, since mathematical writing was a component we felt was
sorely lacking in contests while we were high school students. A few years later
Sandor would make the brilliant observation that our contest could benefit from
two divisions of differing difficulty, bringing the competition to its present form.

This book compiles every team test, solution, and essay used for the Mandel-
brot Competition during its first five years of existence, with a few modifications.
The layout has been reformatted slightly to accommodate a spiral bound book.
The phrasing of some questions has been altered to render them more clear. The
solutions and essays have been extensively edited to improve their readability and
mathematical content, and an index has been included to reference test questions
by topic. We chose the spiral binding so that pages could be easily removed and
copied as needed. Coaches of currently registered Mandelbrot teams are welcome



vi

to duplicate materials for team preparation, up to twenty copies per page per
year.

There is a tremendous amount of material contained in these pages, much
more than can be assimilated in several weeks or even months. Browse through
the tests or glance at the index to get a feel for the types of topics covered. Pick
a test which looks interesting and work on it. The A division tests are in general
more difficult than the B division tests, so peek at B tests for hints, or try A tests
for a challenge. The tests from the first two years, before the different divisions
were created, are about as difficult as the A tests from later years. If you get
stuck, DON’T GIVE UP! Bounce ideas off of a classmate, or simply put the test
down and come back to it the next day. Read half of the solution and then try to
finish the rest of the question on your own. Learn a bit more about the topic by
consulting the appropriate chapters of The Art of Problem Solving, a terrific two
volume introduction to all of these topics and more, available through Greater
Testing Concepts. But most of all, enjoy yourself. We hope that the results
developed on these tests help to introduce you to some of the beautiful aspects
of mathematics which are well within your reach as a high school student.

If you would like to share a creative alternate solution, or obtain permis-
sion to develop some team test idea further as part of mathematical paper or
project, or point out a mathematical or typographical error in this volume,
please do not hesitate to write Sam Vandervelde, P.O. Box 380789, Cambridge,
MA 02238-0789. For more information on joining the Mandelbrot Competition
or to order copies of The Art of Problem Solving please visit our website at
http://www.mandelbrot.org, send us email at info@mandelbrot.org, or write
to Greater Testing Concepts, P.O. Box 380789, Cambridge, MA 02238-0789.

Finally, I wish to thank Richard Rusczyk and Sandor Lehoczky for inviting me
to join them on this fantastic venture. They have inspired me to be more creative
than I could have ever imagined, and they have been supportive partners as well
as good friends. Without Richard’s resourcefulness the Mandelbrot Competition
would not have reached half the number of students it has, and without Sandor’s
vision we would have never incorporated BITEX or the world wide web into this
competition, to name just a few of his contributions. I thank Eunice Cheung as
well as Richard and Sandor for taking the time to listen to my ideas, suggest many
more of their own, and proofread this text. My gratitude also to Bernice Cheung
for creating the sketches that appear throughout these pages. Thank-you.
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October 1990

Mandelbrot Competition

Round One Team Test

Points D, F, and F' are on the sides of triangle AABC('.
Ceva’s Theorem: Lines AD, BE, and C'F are concurrent

E if and only if
(AF)(BD)(CE) = (BF)(CD)(AE).
B D C

N %
4 A N

Diagram: The two incircles (circles tangent to all

three sides of a triangle) are tangent to BC at E and F.

Both circles are tangent to AD at G. &
K B E D F ¢ )
4 M

Problems:

Part i: Let P be a point outside a given circle. There are two Q

lines through P which are tangent to the circle. If @ and R are P <§‘

the points of tangency, show that PQ) = PR. R

Part ii: Suppose that point D is chosen on side BC' of triangle AABC such that the
incircles of AABD and AACD are each tangent to AD at the same point G, as in the
diagram above. If we label AB = ¢, AC = b, and BC = a, then find the length of BD in
terms of a, b, and c.

Part iii: Let the radii of the two circles in the diagram be r and s. Show that the length
of DF is /Ts.

Part iv: Let line [ be the angle bisector of angle ZABC| line m be the angle bisector of
angle ZAC'B, and line n be the perpendicular to BC at point D. Prove that lines [,

m, and n are concurrent by showing that all three lines pass through the center of the
incircle of AABC.

Part v: Suppose that in AABC points H and J are defined on segments AC and AB in

the same manner that D was defined on segment BC' in part ii. Using Ceva’s theorem.

prove that lines AD, BH, and C'J are concurrent.




December 1990

Mlandelbrot Competition

Round Two Team Test

~

Facts: The symbol (Z) represents the number of ways to choose k blocks from a row of

n blocks. For example, we find @) = 3 since from a row of three blocks we can exclude
either the first, second, or third block and pick the other two, for a total of three ways to
choose two blocks from a row of three. The numerical value of (Z) is given by the formula

ny _ n!
k] (n— k)K"

where n! = (n)(n — 1)---(2)(1). By convention we set 0! = 1.

N
>

Al

Problems:

In the next three parts we are choosing n blocks from a row of n + k blocks, k > 1.

Part i: Within this row of n + k blocks, show that there are (":f;l) groups of n blocks
which include the first block.

Part ii: In general, show that there are (":’:m> groups of n blocks which include the m!"
block, but no blocks to the left of the m'" block.

Part iii: We can classify each group of n blocks by the position of the leftmost block in
the group. Use this idea to prove the binomial identity

S B ) R G B |

Part iv: Now suppose that we are given three rows of blocks, each of length p + ¢ + 3,
with three shaded blocks on a diagonal, as shown below.

Row 1
Row 2
Row 3

ool
o—an|H

j¢——— p blocks ——p II<— q blocks ———p

Choose any two columns. The numbers to the right of the rows predict how many chosen
columns will be to the left (L) and right (R), but not on top of, the shaded block in that
row. Prove that exactly one of the predictions is correct. As an example, in the above
diagram only the prediction for the middle row is correct.

Part v: Use part iv to prove the following binomial identity:

(30T =@ =071




January 1991

- Mandelbrot Competition

Round Three Team Test

a )

Facts: The arithmetic mean of a set of n positive numbers is the sum of the numbers
divided by n. The geometric mean is the n*® root of the product of the numbers. For
example, the arithmetic mean of the set {1,3,9} is 5(1 + 3 4+ 9) = 41, while the geometric

mean is 1/(1)(3)(9), or 3. The arithmetic mean of any set of positive numbers is greater
than or equal to the geometric mean of the set. The two means are equal if and only if all
the numbers in the set are equal. This inequality is commonly referred to as AM-GM.

The value of min{a. b, ¢} is the minimal value of a, b, and c. Similarly, max{a, b, ¢} is the
maximal value of a. b, and c. The easily misunderstood notation min max{a, b, ¢} denotes the
following: for each possible triplet {a, b, ¢} choose the largest element. Then min max{a.b, ¢}
is the smallest of all these maximums. The value of max min{a.b,c} is defined similarly.
For example, if a, b, and c are different integers less than 10, then maxmin{a.b,c} is 7.
since the largest possible minimum oceurs when {a, b, c} is {7,8,9}.

/
<
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Problems:

Part i: For positive x, y, and z such that xyz = 1, use the arithmetic-geometric mean
inequality to show that minmax{x +y,y + 2,2 + z} = 2.

Part ii: Again, let xyz = 1 with x, y, and =z positive. Show that min{x +y,y + 2.z + r}
can be as large as we wish for suitable xz, y, and z.

Part iii: For positive x, y, and z such that x + y + z = 3, show that

max min{ry,rz,yz} = 1.

Part iv: Show that for two positive real numbers a and b we have

a+b [a2 +b%2 a+b
_ > _
2 \/CE_ 2 2

by showing that this inequality is equivalent to

(a+b)?
2

> \/(2ab)(a? + b?)

and then using AM-GM.
Part v: Show that for positive a and b,

a2+ a+b 2
— > I —
V"2 2 > Vab 1/a+1/b




March 1991

Mandelbrot Competition

Round Four Team Test

~

Facts: We commonly use the symbol N to represent the natural numbers, which are the
numbers {1,2,3,...}. If f(m) is a function defined for all natural numbers, and f(m) is
itself a natural number in all cases, then we say that both the domain and range of f are the
natural numbers, and we indicate this fact by writing f : N — N. Unless stated otherwise,
on this team test f and g will always refer to functions f,g: N — N.

Given a function g, the function f is a solution to f(g(m)) = g(f(m)) if this equation
holds true for all natural numbers in the domains of f and g. Finally, we say the function
f : N — N is one-to-one and onto if for each natural number n there is exactly one natural
number m such that f(m) = n.

\

N

( Problems:
Part i: Show that for any g the function f(m) = m is a solution to f(g(m)) = g(f(m)).

Part ii: If g(rn) = m?, describe all possible functions f : N — N that are solutions of

flg(m)) = g(f(m)).

Part iii: Suppose that the domains and ranges of both f and g are restricted to the
natural numbers {1.2....,7}. That is, f(m) and g(m) are only defined for x = 1,2,...,7
and may only take on the values {1,2,...,7}, though not necessarily all of them. How
many distinct functions f(m) exist such that f(g(m)) = g(f(m)) if g(m) is defined as

2) m = 12 3 4 5 6 7
gm) = 1 2 3 4 5 6 7
b) m =12 3 4 5 6 7
g(m) = 4 3 1 7 5 6
) m = 1 2 3 4 5 6 7
“Y9m) = 1 1 2 3 4 5 6

Part iv: If g : N — N is one-to-one and onto, prove there is a one-to-one, onto function
f: N — N, besides the trivial solution f(m) = m, which satisfies g(f(m)) = f(g(m)).

N




Mandelbrot Competition

Round Five Team Test

April 1991

Facts: A proper divisor of a positive integer n is a smaller positive integer which exactly
divides n. For instance, 2 is a proper divisor of every positive even integer except for 2. A
perfect number is a positive integer whose proper divisors sum up to the original number.
The first two perfect numbers are 6 and 28. Because one should not routinely believe
everything that one reads, let us verify that 28 is in fact a perfect number. The proper
divisors of 28 are 1, 2, 4, 7, and 14, and we find 1 +2+4 + 7 + 14 = 28 as claimed.

\

~

Definitions: We now define a magical set. A magical set is a group of three or more
positive integers, not necessarily distinct, such that each number in the set exactly divides
the sum of the remaining numbers. If these numbers have no common divisor except 1 we
call the set a primitive magical set. Thus the set {1,2,6,9} is a primitive magical set since
14+2+6=9isamultiple of 9; 1 +2+9 = 12 is a multiple of 6; 1 +6 + 9 = 16 is a multiple
of 2; and 24 6 +9 = 17 is a multiple of 1. The set {2,4, 12,18} is magical but not primitive

because all the numbers are divisible by 2.

9%
\

Y

Problems:

Part i: Show that the set {1,1,2,4,...,2"} is magical for all n > 1.

Part ii: Show that all the proper divisors of a perfect number form a magical set.

Part iii: Find all primitive magical sets with exactly three numbers.

Part iv: Find all magical sets with four numbers whose smallest elements are 1 and 3, i.e.
of the form {1,3,m,n} with m,n > 3.

Part v: Prove that given any magical set, one can include an additional number in the set

so that this new set is also magical.

/
<

J
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Round One Team Test October 1990

Part i: Let O be the center of the circle and draw radii OQ and OR which are equal
in length. Since PQ and PR are tangents, angles ZPQO and ZPRO are right angles. Bv
the hypotenuse-leg criteria, APQO is congruent to APRO. Therefore corresponding sides
PQ and PR are congruent, as desired. In addition, ZOPQ = £OPR, so PO is the angle
bisector of angle ZQPR. This fact will be useful in part iii.

Part ii: Let L and M be the points
where the two incircles are tangent to sides
AB and AC respectively. From the previ-
ous proof we know that BL = BFE; let us
label] this common distance w. Similarly we
know that AL = AG and that AG = AM.
Hence AL = AM: we call this distance x.
We also label DE = DG = DF = y and
C'F = CM = z as done in the diagram. We are looking for BD in terms of a, b, and c.
Using the common distances just defined we have a = w+2y+ 2, b=x+ z, and c = w + .
Since we are seeking BD = w+y we try a+c—b = (w+2y+2)+(w+a)— (r+2) = 2(w+y).
This computation proves that BD = %(a —b+c).

Part iii: There are many approaches to this problem, most of them involving two
observations. Let R and S be the centers of the left and right hand circles respectively. Then
by part i% sum (zf_imgles £ZRDG and £SDG is half of the sum of angles /EDG and £ F DG
because DR and DS are angle bisectors. In other wﬂ)s, angle ZRDS is a right angle. Also.
since RG and SG are both perpendicular to AD, RGS is a straight line. so we have shown
that ARDS is a right triangle. For convenience we label RE = RG = r and SF = 5G = s.
We now apply the Pythagorean theorem repeatedly to find that RD? = r2442. SD? = s%2+442,
and RS? = RD?4+SD? = r? +s*+2y% But RS? = (r+5)? = r*+2rs+s% Equating the two
expressions for RS? and canceling common terms we obtain 2y? = 2rs, or DF = y = \/7s.

Part iv: One of the advantages of proving a statement as opposed to calculating a
number is that one knows in advance what the answer is, and can work backwards. We
employ that strategy here. Namely, the
two angle bisectors [ and m meet at the
incenter of AABC, so we know that the
point of concurrency should be I, the in-
center. If we can show that the perpen-
dicular through D also passes through
[ - * ~am I we will be done. Notice that this will

n occur if D is the point of tangency of the
incircle with side BC. Let D’ be the actual point of tangency. We need to show that D and
D' are the same point, which we will accomplish by showing that BD = BD’. Let P and @
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be the other points of tangency to the incircle as labeled in the diagram. Since tangents to a
circle from the same point are congruent, we know BD' = BP, AP = AQ, and CQ = CD’.
Using these equations we can write a+c—b= BD'+ D'C+ BP+ PA—- AQ — CQ = 2BD'.
Hence BD' = 1(a+c—1b), so BD = BD'. Thus D is in fact the point of tangency by virtue
of being the proper distance from the vertex B, proving that all three lines are concurrent
at the incenter.

Part v: Since BD = 3(a+c—b) and BC = a we find that CD = BC—BD = 1(a+b—c).
Defining the semiperimeter s = 1(a + b + ¢), we can write BD = s —band CD = s — c.
If H and J are defined on AC and AB the same way that D was defined on BC, then by
symmetry we have AH = s—a, HC =s—c¢, AJ = s—a, and BJ = s — b. In this case
it is clear that (AH)(CD)(BJ) = (AJ)(BD)(CH), so AD, BH, and CJ are concurrent by
Ceva’s theorem.

{(:3 > {:}}
Round Two Team Test December 1990

Part i: Since the first block must be included in the group of n blocks, we have n — 1
blocks left to choose. These n — 1 blocks can be selected from any of the n+ k — 1 remaining
blocks in the row aside from the first one. By definition this can be done in (":ﬁl) ways.

Part ii: This result can be proved in a manner similar to part i. Once again we have
n — 1 blocks to select, but only n + k — m blocks left in the row from which we may select
them, since none of the n — 1 blocks can be chosen from among the first m blocks. Again,
by definition. this can be done in ("le__lm) ways.

Part iii: First notice that part ii only makes sense if m < k+ 1. For if m > k + 1 then
the number of blocks left in the row from which we have to choose n — 1 blocks would be
less than (n + k) — (k+ 1) = n — 1. which won’t work. We now divide up the ":k groups
of n blocks which can be chosen from the row of n + k blocks. We label all groups which
include the first block in the row of n + k blocks with a 1. Similarly, we label all groups
which contain the second block but not the first with a 2, and in general we label a group
with an m if the first block of the group (from left to right) occurs in position m. Since
m < k + 1, we have divided all (”““) groups into k + 1 categories. By part ii there will be

n
n+k—-m
n—1

) groups labeled with an m, so there will be a total of

n+k—1 n+k—2 n n—1
- ot +
n—1 n—1 n—1 n—1
groups in all the categories. Since we already know that there are a total of (":k) groups,
we have shown that

(D () 009

4
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Query: Can the reader prove this identity just using the fact that (Z:}) + (";1) = (:)7

Part iv: For simplicity, we will do a case by case analysis. A general proof can be
constructed, but is significantly more difficult. The first possibility is that both columns
lie to the right of the top shaded block. In this case no columns could be located to the
left of the middle shaded block, and at most one column could be located to the left of
the bottom shaded block, so only the top row’s prediction would be correct. Suppose now
that at least one column lies to the left of the middle shaded block. If the other column is
located to the right of the middle shaded block, then only the middle row’s prediction will be
correct. Otherwise the second column is located to the left of the bottom shaded block, so
only the bottom row’s prediction will be correct. We have exhausted the possibilities for the
placement of the two columns, and in every case we found that exactly one row’s predictions
was correct, so we are done.

Part v: As in part iii we will consider all possible pairs of columns that can be chosen:
there are (”+g+3) such pairs. Part iv indicates that each pair will fall into exactly one of three
general categories: those pairs where both columns lie to the right of the top shaded block.
those pairs which surround the middle shaded block, and those pairs where both columns
are to the left of the bottom shaded block. In the first case we need to choose two columns
among the ¢ + 2 columns to the right of the top shaded block and none from the p columns

to the left of that block. This can be done in (g) (qu) ways. Similarly the second case can

be done in (”“1”) ("TI) ways and the third in (’“52) (g) ways (verify!). However, the number

p+q+3
2

)2+ C)) - ()0 - 0727)

Query: Can the reader generalize parts iv and v to show that

)= O 02 6) -0y

] o (=

Round Three Team Test January 1991

of pairs of columns in all the categories is ( ), so we have shown that

Part i: It’s a good bet that the arithmetic mean-geometric mean (AM-GM) inequality
will be useful since we are dealing with sums, products, and inequalities. Keeping in mind
that z, y, and z are positive with zyz = 1, we write &8+ > s/zyz = 1, or 2 +y + 2z > 3.
Returning to the original problem, we must find a way to show that the smallest a maximum
can be is 2. This particular maximuin can certainly be attained when r = y = 2z = 1. Why
can't it be lower? Let’s suppose that the maximum was less than two for some choice of

r.y.and 2. Thenr+y < 2, y+ 2 < 2, and 2z + ¢ < 2. Adding these together yields
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2 +y+2)<6,or x+y+ 2 <3, which is impossible by AM-GM. Therefore the smallest
maximum is indeed 2.

Part ii: Upon experimenting one discovers that to obtain a huge minimum it suffices
for two of the numbers to be very large, while the other one is so small that the entire
product balances out to equal one. Let’s make this precise. To show that the minimum can
be arbitrarily large we choose any positive integer N. We then we let x = N, y = N, and
z = 1/N? which satisfies zyz = 1 and yields min{z+y,y+2,2+2} = N+1/N? > N. Thus
the minimum of the pairwise sums can be made as large as we desire.

Part iii: This problem is similar to part i so one can prove it in an analogous manner,
which the reader is encouraged to do. Instead, we present another argument which a student
from Randolph High School submitted. By AM-GM we have the three inequalities

r+y T+ z y+=z

5 > \/xy, > Vxz, > > \Yyz.

Adding these together yields
3=x+y+z22>Jry+vrz+/yz.

This equation tells us is that it is impossible for all of \/zy, /2z, and ,/yz to be greater than
1. or else we would have /Ty + \/z2 4+ \/yz > 3. But \/zy > 1 if and only if zy > 1, so the
previous statement implies that it is impossible for all of xy, xz, and yz to be greater than 1.
In addition, this minimum is realized when » = y = 2 = 1. Hence maxmin{zy, yz,za} = 1.
Part iv: The golden rule for proving inequalities is summed up by the word reversibility.
Just because one is able to algebraically transform a given inequality into a true statement.
such as one provable by AM-GM, doesn’t mean that the original statement is true! Using
this (incorrect) method one could argue, “I'll try to prove that 2 > 3. Combining this
equation with the fact that 3 > 1 and using transitivity I get 2 > 1, which is true. Therefore
2> 3.7 The key is to indicate how it is possible to work hbackwards from the valid inequality
to the statement to be proved, i.e. reverse the steps. No difficulty arises when adding or
multiplying to reach the next equation, since these operations have inverses. However, care
must be taken when squaring both sides of an equation. The step a > b = a® > b? can be
reversed if a and b are both positive, but not in general. Try a = —3 and b = 2, for example.
With this strategy in mind, we simplify the given statement, watching out for sums and
square-roots of products where an AM-GM may be applicable. The steps look like

a+b a?4b? a+b

wb_ab > (e
— a+b > 4/ “2—;”’2 + Vab (transposing terms)
< a’+2ab+b > “2—;1’2 +ab+2 ("'2—;"2) (ab) (squaring both sides)
= o?420b48% > [(2ab)(a? + b?). (collecting terms)

At this point we realize that the final statement is true by AM-GM on the two numbers
(a? + b?) and (2ab). Since a and b are positive both expressions in the second step are also
positive, so all steps are reversible and we have proved the claim. Notice that equality is
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\' achieved when a? 4+ b* = 2ab, which is equivalent to (a — b)? = 0. Thus equality is attained
only when a = b.
Part v: We proceed as before, writing

VEE - > Vab- 2y
— @ ~Vab > (2‘;;3,"; (combining two fractions)
- ka—gbﬁ —/(a® +6%)(2ab) 2 f&%bb)iz (squaring both sides)
— 2(‘1212:;1,()0 O > /(a2 + b?)(2ab) (combining fractions again)
— w > \/(a2 + b2)(2ab)(4(a + b)4).  (multiplying by 2(a + b)?)

At this point we have a sumn on one side and the square-root of a product on the other, but
the numbers don’t match up in order to use AM-GM. The difference of squares is suggestive.
so we try

— (a+b)4+(aﬂ;b)“—(a—b)“ > \/(a2+62)(2ab)(4(a+b)4)
= (ANl > f0(a2 4 b2)(4ab))(a + b)°.

We're in luck! This equation is true by AM-GM on the numbers (a+ b)* and 2(a? + b?)(4ab).
The only step which is not clearly reversible is the second in which we squared both sides

k of the inequality. It is left as a quick exercise for the reader to check that when a and b are
positive then /(a2 + b2)/2 — v/ab is also. The right-hand side is clearly positive, so this step
is also reversible, and we are done. Query: Can the reader show that equality is attained
only when a = b?

Round Four Team Test March 1991

First, a brief word about functions. A function is no more than a rule that associates
an object from one set to an object in another set. I could create a function that pairs
each year between 1980 and 1990 to the best selling math textbook of that year. Thus
f(1985) = Functions For Fveryone by Nat Churrelog, or something like that. The domain
of this function is any allowable input, in our case a year from 1980 to 1990. The range is
allowable output, here the title of a math text book. The functions in all of the following
problems associate two natural numbers, so the domain and range are {1,2,3,...}, except
in part iii.

Part i: Suppose that m is any natural number. Then f(m) = m by our rule, so f(m)
and m are the same natural numbers, thus g(f(m)) = g(m). Since g(m) is also a natural

p number our rule f(m) = m applies, and tells us that f(g(m)) = g(m). But g(f(m)) = g(m)
- also, so f(g(m)) = g(f(m)) for all natural numbers m.
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Part ii: If g(m) = m?, then f(g(m)) = f(m?) by substitution, and similarly g(f(m)) =
[f(m)]?. Hence we must describe all functions f : N — N such that f(m?) = [f(m)]*.
Let’s start experimenting. If m = 1 then f(1) = [f(1)]?, so f(1) is a natural number which
equals its own square. The only natural number for which this is true is 1, so we must have
f(1) = 1. What if m = 2? Then our equation tells us that f(4) = [f(2)]*>. So once f(2) is
decided upon, f(4) is determined. However, there are no restrictions on f(2), because 2 is
not the square of any natural number! Similarly, f(3) can also be defined arbitrarily. Next,
f(4) = [f(2)]* as pointed out above, then f(5) can be any natural number, and so on. In
sum, the general solution is described by

hd f(l) =1,
e f(m) can be defined arbitrarily whenever m is not a perfect square, and

e If m is perfect square, say m = n?, then f(m) is determined by the equation f(m) =

fn?) = [f(n)]*.

Note that the third requirement can be applied recursively for powers greater than two, for
example [(16) = [f(4)]2 = [f(2))

Part iii: a) Recall that f(m) = m is a solution of f(g(m)) = g(f(m)) forany g : N — N.
Since g(m) = m in this problem any function f: {1,2,...,7} — {1,2,...,7} is a solution
using analogous reasoning. How many such functions exist? There are seven possible choices
for each of f(1), f(2), ..., f(7), for a total of (7)(7)...(7) = 77 functions altogether.

b) A good way to attack these problems is to just plug in values of m. When m =1 we
find g(f(1)) = f(g(1)) = f(2). since g(1) = 2. Trying the other six values for m leads to the
seven equations shown below.

f(2) = g(f(1)) J(7) =9(f(5))
fA@) =9(f(2)  fB)=g(f3) { f()=g(f(6)) .
J(1) = g(f(4)) f(6) = g(f(7)

Once we choose a value for f(1) then f(2) is determined by the top left equation, which in
turn dictates f(4) using the next equation. The bottom left equation then yields f(1), which
should equal the value of f(1) we already have if our choice of f(1) is to lead to a solution.
In fact. every one of the seven possible choices for f(1) does work. The reader should try
f(1) =3 and f(1) = 5 to verify this fact. The same observations indicate that f(5) can take
on any value from 1 to 7, and that once f(5) is chosen both f(6) and f(7) are determined.
Finally, the middle equation shows that if f(3) is the input for g then it remains unchanged.
The only number fixed by ¢ is 3, so we must have f(3) = 3. In sum, the values of f(1) and
f(5) completely determine the solution, and each can take on seven distinct values, so there
are 49 solutions.

c) We employ the same strategy as before, that is, we experiment. Suppose that we
knew f(7). The relation f(g(m)) = g(f(m)) when m = 7, along with the fact that g(7) = 6,
implies f(6) = ¢(f(7)). In the same manner, using m = 6 in the general formula yields
J(5) = g(f(6)), so we can determine f(5) now that we know f(6) from above. The same
process continues on down to f(1) = g(f(2)) when m = 2, so once we choose f(7) all
values of f are determined. It remains to verify that these values constitute a solution.
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By construction f(g(m)) = g(f(m)) for m = 7,6, ..., 2. Hence we need only check that
g(f(1)) = f(1). It is an easy exercise to show that f(m) < m for all m (can the reader find
a quick demonstration?), so f(1) < 1 which means that f(1) = 1. Therefore g(f(1)) = f(1)
reduces to g(1) = 1 which is true, so the values of f yield a valid solution. For example, if we
let f(7) =4, then f(6) = g(f(7)) = g(4) =3, f(5) = 2,and f(4) = f(3) = f(2) = f(1) = 1.
Work this out on a piece of scratch paper and it will become clear! Since there are only
seven choices for f(7), this leads to just 7 solutions.

Part iv: One foolproof solution is the inverse of g. Recall that since g is one-to-one and
onto there exists a unique m such that g(m) = n for each natural number n, by definition.
We exploit this fact to construct the inverse function f. To define f(n), find the unique m
such that g(m) = n, then set f(n) = m. Thus if ¢ maps m to n, then f maps n back to m.
or “inverses” the action of g. (The inverse of g is commonly denoted g=!.) It follows that
f(g(m)) = m for all natural numbers m, and similarly g(f(m)) = m also, so f is indeed
a solution. There is one technical detail to attend to, namely, what if the above method
produces the trivial solution f(m) = m? This scenario occurs only if g(m) = m in the first
place (verify!). It is a simple matter to produce a nontrivial solution in this case since any
f is a solution by part i.

Several schools found a simpler and perhaps more ohvious solution. They argued that
f(m) = g(m) is also a solution, since this would ensure that f(m) was one-to-one and onto.
and plugging this in yields g(g(m)) = g(g(m)), which is clearly true. The technical detail is
handled as before.

Round Five Team Test April 1991

Part i: The definition for magical sets is a little cumbersome as it is stated. It would he
much easier to work with the sum of all the numbers in a magical set. Indeed, we note that
in the set {1,2,6,9}, the example given in the definition, the sum of all four elements is 18,
and each element of the set divides 18. This observation motivates the following lemma.

LEMMA: A set is magical if and only if each element in the set divides the sum of all the
elements of the set.

PROOF: Suppose that M = {aj,as,...,a,} is a magical set, and S is the sum of all its
elements. Since M is magical, az+- - - +a,, is a multiple of a;. Therefore (a1)+(az+...+a,) =
S is also a multiple of aj, so a; divides S. Since there was nothing special about using a; this
reasoning will work equally well for any element of M, which shows that every element of M
divides the sum S. Proving the converse requires no more than using the above arguments
in the opposite order. Try outlining that proof for practice if this paragraph took more than
a minute or so to digest.

The rest of part i follows readily. If M = {1,1,2,...,2"} then the sum of all the elements
isS=1+4+1+2+..42"=2"* Clearly each element of M divides the sum S, so M is a
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magical set by the lemma. In fact M is a primitive magical set since one of the elements of
Mis 1.

Part ii: Let M = {d;,ds,...,dn} be the set of proper divisors of some perfect number p.
Then p = dy +dy + - - - + d,, by the definition of a perfect number, and each d; is a divisor of
p. Thus M is a set in which every element divides the sum of all the elements. Hence M is
a magical set by the lemma. Again, 1 must be an element of M since 1 is a divisor of every
perfect number, so M is in fact primitive.

Part iii: This proof is based on the solution submitted by Stuyvesant High School. Let
the magical set be (a,b,c) listed in ascending order. Then a < cand b < csoa+b < 2c
But a + b must be a multiple of ¢ (it’s a magical set), so either a+ b= cor a + b = 2c.

The latter case is easily disposed of, since the only way to achieve a +b = 2c given a < ¢
and b < cis if a = ¢ and b = ¢, yielding the set (c,c,¢). We require the GCD to be 1 for a
primitive magical set, so the only solution of this form is (1,1, 1).

We now assume that a + b = c. Since our set is magical a + ¢ = 2a + b is a multiple of
b. which occurs if and only if 2a is a multiple of b. However, a < b so 2a < 2b, and the only
multiples of b not greater than 2b are b and 2b. Therefore either 2a = b or 2a = 2b. In the
first case we would have ¢ = a + b = 3a, so our set becomes (a,2a,3a). The only set of this
form with GCD equal to 1 is (1,2,3) since a is a common factor of all three elements. The
second case proceeds similarly. One quickly sees that if 2a = 2b then our set is of the form
(a,a,2a), yielding the only other possible three element primitive magical set, (1,1,2).

Part iv: Our magical set is {1,3,m,n} where m,n > 3. We’ll assume without loss
of generality that m < n. Intuitively, the size of n is limited by the fact that it must be
the largest element of the set while at the same time dividing the sum of the other three
elements. We investigate this balance by writing 1 + 3 + m = kn, using the fact that n
divides the sum (1 + 3 4+ m). Now

4 1
kn=1+3+m<4+n = k§1+—§2§,
n

since n > 3. Therefore we can only have k =1 or k = 2. :

If k = 1 then our set becomes {1.3,m,4+m}. Next, m also divides the sum of the other
elements, so m|(8 + m) which is equivalent to m|8. Since m > 3 either m = 4 or m = 8
which lead to the sets {1,3,4,8} and {1,3,8,12}. Finally, checking that 3 divides the sum
of the remaining elements reveals that only the second one is a magical set.

On the other hand, if £ = 2 then n = mT“. Recalling that 3 < m < n, it is easy to show
that only m = 4 produces an integer n at least as large as m. Our set becomes {1,3,4,4}
which is the only other solution.

Part v: One candidate for an additional element is the sum of the elements in the
original set. If this sum is S, then the sum of the elements in the new set is clearly 25.
By the lemma, we need only show that each element of the new set divides 2S. Since the
original set was magical every element divided S, and so will also divide 2S. Furthermore,
the additional element S divides 25. This accounts for all elements in the new set, which is
therefore magical as well. Note that our new set is primitive if and only if the old one is.
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Mandelbrot Morsels

Breakfast Mathematics

1991-92

The purpose of this essay is to provide an introduction to a few concepts which, when
combined with your own ingenuity, will solve all the problems on the round three team test.
Along the way we will prove a fun theorem about figures in the plane informally known as
the Pancake Theorem. Without further ado, here it is.

THEOREM: (The Pancake Theorem) Let A and B be two smooth convex figures in the plane.
Then there exists a line which simultaneously bisects the areas of both figures.

In breakfast language that says, “It is possible to cut two (possibly overlapping) pancakes
each in half with a single stroke of the knife.”

Before diving into the proof, let’s specify what is meant by a smooth convex figure.
The modifier smooth pertains to the boundary of the figure and indicates that it has no
sharp corners or angles but curves “smoothly,” as illustrated by the second and third figures
below. but not the first. The term conver technically means that the segment joining any
two points of the region is contained entirely within the region. Intuitively this means that
the region has no indentations. The first and third figures are convex, while the second is
not. We restrict our attention to smooth convex figures so that no undesirable exceptions to
our theorems will arise. This enables us to focus on the concepts without fussing with the
technicalities.

Figures:

2 3

To build up to the theorem we will make use of a lesser result, a “lemma”, which we will
prove first. (Lemmas are sure signs of a good proof — 1 highly recommend them.)

LEMMA: If A is a smooth convex tigure with area K and [ is a given line, then there exists
a unique line parallel to [ which bisects the area of A.

PRroOF: This is intuitively obvious. Translate the line [ completely to the left of A (always
keeping it parallel to its original position) so that all of the area is to the right of the line.
Now slide the line across the figure until it is completely to the right of A, so that all of the
area is to the left of the line. It stands to reason that at exactly one position in between half
of the area was on each side of the line, so this is the desired unique line.

ALTERNATE PROOF: For the rigorously inclined, we will ground the above argument in
some analysis. If you were happy with the first argument then please skip directly to the
next paragraph. In order to make quantitative measurements we superimpose a number line
perpendicular to [. For convenience’s sake, assume that 0 lies just to the left of our figure
A and scale the number line appropriately so that 1 is located just to the right of A. We
next define a function f(x) which measures the amount of area in A lying to the left of the
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number z. (More precisely, draw the line
parallel to [ through x; f(x) measures
how much area lies to the left of this
line.) Then by our setup f(0) = 0 and
f(1) = K, where K is the area inside A. !
Furthermore, f(z) is a strictly increas-
ing, continuous function for 0 < z < 1.
It is continuous because if we change x
by a very small amount then area func-
tion f(x) also only changes by a small number line
amount. Since f(0) = 0 and f(1) = K 0
the Intermediate Value Theorem guaran-
tees that f(x) assumes all values between
0 and K as x varies from 0 to 1. Furthermore, the fact that f(x) is strictly increasing guar-
antees that f(r) achieves each value between 0 and K only once. In short, there is a unique
number ¢ between 0 and 1 such that f(c) = $K. This number corresponds to the unique
line parallel to [ which bisects the area of A.
] The concept of translation was the key to the
T lemma. It turns out that rotation is the key
/ﬁ/ \ to proving the pancake theorem.
MAIN PROOF: Choose some line [ to serve as an
angular direction guide, and let m be the unique
line parallel to [ that bisects A. By some remark-
able coincidence this line might also bisect B and
we would be done, but this is not likely. We prob-
ably chose the wrong initial line. so rotate our di-
rection indicator [ a small amount around a swivel point 7. Then line m will also rotate a
little (it remains parallel to [). After line m rotates 180° it will return to its original position,
since there is only one way to bisect figure A with line m when it is parallel to the initial
direction. Notice that line m rotates in a continuous manner, always bisecting region A.
What has been happening with line m in relation to figure B all this time? Let the area
of figure B be K’, let x represent the amount of area in B lying above m, and let y be the
amount of area below m. For example, in the diagram above x = 0 and y = K'. As m
rotates through 180° we keep track of the quantity x — y , the difference between the area
above and below m. Of course we would like this quantity to equal 0 at some point, because
in that case line m would bisect the area of B. As pointed out before, after m has rotated
180° it returns to its original position. But now the difference between the top and bottom
areas is y — . (Just turn the diagram upside down; the top and bottom portions of figure
B swap places.) Therefore as line m rotated the difference between top and bottom areas
has changed continuously from z — y to y — . One of these is positive and the other is
negative, so somewhere in between the difference must have been zero! Voila, the desired
line bisecting both areas.
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Mandelbrot Competition

Round One Team Test

Facts: The square of any integer leaves a remainder of either 0 or 1 when divided by 4.
We prove this by considering two cases. If n is an even integer then it can be written as 2k
for some integer k. Thus n? = 4k?, which is divisible by four and hence leaves a remainder
of 0. Otherwise n is odd and can be written as 2k + 1, so n? = 4k? + 4k +1 = 4(k? + k) + 1.
which clearly leaves a remainder of 1 when divided by 4. Similarly it may be shown that all
squares leave a remainder of either 0 or 1 when divided by 3.

Y

/
)
Definitions: If a set of one or more integers {aj,as, ..., a,}, not necessarily distinct, has
the property that >..; a;a; (the sum of the products of all pairs of integers in the set) is
a perfect square, then we call such a set a square set. For example, the set {2,3,6} is a
square set since 2-3+2-6+3-6 = 36, a perfect square. We also associate a number b with
a square set, where b is defined by

b=aj+ar+-+a,+2 | aa;
i#]

In the example b would equal 23 since 2 + 3 + 6 + 21/36 = 23.

\
/

/
\
Problems:

Part i: Suppose that {ay,as,...,a,} is a square set, and b is defined as above. Show that
the set {ai,as,...,an,b} is also a square set.

Part ii: Let {a1,aq9, ..., a,} and b be as in part i. Prove that

{al, Ce ,Cl,i_l,b,a,;+1,. .. ,an}

is also a square set. That is, b has the property that if any element of the original square
set is replaced by b, then the new set is also a square set.

Part iii: If ¢ is an integer (such as 4, 13, or 50) that can be expressed as the sum of two
integer squares, show that both 2¢ and 5g can also be so expressed.

Part iv: If ¢ is a positive integer that can be expressed as the sum of two integer squares.
then prove that 3¢ cannot be so expressed.

Part v: Prove that it is impossible for the squares of three consecutive integers to sum to

another perfect square.

J
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Mlandelbrot Competition -

Round Two Team Test

Ceva’s theorem states that cevians AD, BE,

Facts: A and C'F are concurrent if and only if

(AF)(BD)(CE) = (AE)(CD)(BF).

Another useful tool is the law of sines. [f we
label AB =c¢, AC = b, and BC = a then

c sinA_sinB_sinC
a b ¢

where A is the measure of angle ZBAC and similarly for B and C.

N
r
Diagram: Although not shown, lines AD, BE,
and C'F are concurrent, as are lines DP, EQ), -
and F'R.
\
/
Problems:
Part i: Prove that cevians AD, BE, and C'F are concurrent if and only if
(sina)(sin 6)(sine) = (sin F)(siny)(sin¢). The angles o, 3, ..., are indicated on the
diagram in the facts section.
Part ii: Let AD’ be the line formed by reflecting line AD through the angle bisector of
angle - BAC, and define BE" and C'F’ in an analogous manner. Prove that if AD, BE,
and CF are concurrent then so are lines AD', BE', and C'F’.
Part iii: Prove that the lines through A and the incenter of AABC, through B and the
circumcenter of AABC, and through C and the orthocenter of AABC are concurrent if
and only if cos?A = cos B cos C.
Part iv: Suppose that AD, BE, and CF are the altitudes of acute AABC, so that they
lie properly within the triangle. Prove that in this case we have « = v, 8 = ¢, and 6 = (,
and conclude that the altitudes are concurrent.
Part v: Let D, E, and F be points on the sides of AABC' such that AD, BE, and CF
are concurrent. Form triangle DEF', and select points P, @, and R on its sides so that
DP, EQ, and FR are concurrent, as in the diagram above. Prove that AP, BQ, and CR ~—
must also be concurrent.
o 4

_99 .



January 1992

Mandelbrot Competition

Round Three Team Test

~

Definitions: A smooth convex figure is a convex figure whose boundary is smooth. A
smooth boundary is one which has no sharp bends or angles, but curves “smoothly,” such as
in examples 1, 2, and 4 below, but not 3. Technically, a convex figure has the property that
given any two points in the region, the straight line segment joining these two points also
lies completely within the region. Intuitively this means that the figure has no indentations.
Examples 3 and 4 below are convex, while examples 1 and 2 are not. There are exactly two
tangents to the boundary of a smooth convex figure parallel to a given direction. one on
each side, as pictured in example 5.

N J

;- N
1 2 3 4 5

Problems:

Part i: Let A be a smooth convex figure and let P be a given

point on the boundary of A. Prove that there exists a 60° angle ‘ ‘

with vertex at P enclosing exactly one-third of the area. P

Part ii: Prove that it is possible to circumscribe a square about any smooth convex figure
A. This means that all four sides of the square are tangent to the boundary.

Part iii: Let B be a smooth convex figure whose boundary contains no line segments, i.e.
always curves, as in examples 2 and 4 above, but unlike example 3. Let [ be a given line.
Prove that there is a unique line parallel to [ which bisects the perimeter of B, so that half
of the boundary’s length lies to one side of [, and the other half lies on the other side.
Part iv: Let B be a curve as in part iii. Prove that there exists some line m which
simultaneously bisects the boundary of B, as before, and bisects the area of figure B.
Part v: Let B be a smooth convex figure containing no boundary o

segments as in part iii. Let the figure have perimeter d and area K. M
Suppose we choose three points L, M, and N on the boundary of B

and a point P in the interior. Segments LP, M P, and N P divide

the region into three areas K;, K, and K3. Points L, M, and N dy

divide the perimeter into three lengths d;, dz, and ds. Prove that it dy
is possible to choose four such points L, M, N, and P so that N

Examples:

/
<

Y

Ki K Ki K

d dy dy d
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Round Four Team Test

March 1992

Facts: Every positive integer n can be uniquely expressed as a sum of powers of three in
the following manner: n = ax3® + - 4+ a13 + ag, where each of the a; is either 0, 1, or 2.
This expression is commonly called the base three representation of the positive integer n.
For example, the base three representation of 32 is 32 = 1(27) +0(9) + 1(3) +2(1), or simply
1012(3) in shorthand notation.

On a somewhat different note, let « be a real number and let ¢ be a positive integer. Then
the sequence {. .., —%. 0, %, %, ...} of rational numbers lies evenly spaced on the number line.
and it is clear that o can be no farther than % from the nearest rational in this sequence.
This fact can be stated compactly by saying that a can be approximated by a rational of the
form g with an accuracy of i2—1q. However, better approximations than this can be attained.
A famous result from number theory states that given a real number «, there are infinitely
nany positive integers g such that a can be approximated by a rational of the form g with
an accuracy of iq%. Finally, the fractional part of a positive number x is just the portion
of that number following the decimal point and will be denoted {z}. For example, {2} = 0.
{r}=.14159265 ..., and {2} = .125. It may be useful to know that log,,2 ~ .30103.

N
/

Problems:
Part i: Show that every positive even integer n can be written

n:ak3k+---+a13+ao,

where each a; is either 0, 2, or 4.
Part ii: Show that every integer n has a “pseudo” base three representation in which each
a; is -1, 1, or 3. That is, n can be written n = a3 + --- 4+ 13 + a¢ with a; = —1, 1, or 3.

In the following problems you will prove that infinitely many powers of three
have 1 as their initial digit. All logarithms are base ten logarithms.

Part iii: Show that a positive integer m has initial digit 1 if and only if
0 < {logm} < log2.

Deduce that 3% has initial digit 1 if and only if 0 < {klog3} < log2.

Part iv: Let « be a real number. Prove that there exist multiples of « that are arbitrarily
close to an integer value.

Part v: Prove that infinitely many multiples of log 3 have fractional part between 0 and
log 2. Conclude that infinitely many powers of three commence with the digit 1.

<
<
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Mandelbrot Competition

Round Five Team Test

Facts: Suppose that points A, B, C, and D all lie on the same

circle; then we call figure ABCD a cyclic quadrilateral. Since an B
inscribed angle equals one half of its subtended arc, we know for

instance that ZABD = £ACD, and that angles ZABC and ZADC D

are supplementary. Conversely, if B and C' lie on the same side of

line AD and ZABD = £ACD, then it follows that A, B, C, and D

all lie on the same circle. Similarly, if B and D lie on opposite sides

of AC and angles ZABC and ZADC' are supplementary then points A, B, C, and D again

lie on a single circle.

C

. /
/

Diagram: A Points A and C are located on opposite
sides of a given line [. Segment AC' in-
tersects line [ at point M. Point D is

| < D > -
o~ M\V/ located on [ to the right of segment AC'
c so that ZACD = £LADM.
\ %
4 N
Problems:

Part i: Given line [ and points A, ', and M as shown in the diagram, prove that there is
exactly one point D on [ to the right of AC such that ZACD = ZADM.

Part ii: In the above diagram, let D be defined as before and let P be the unique point
on I to the left of AC such that ZACP = Z/APM. Prove that AP = AD.

Part iii: Let @ be the unique point on [ to the left of AC such that LCAQ = £CQM
(with D as before). Prove that QC, AC, and AD will form the sides of a right triangle.
Part iv: In the above diagram, what is the locus of point D as line | moves parallel to its
initial position, always between points A and C?

Part v: Let AC be a given segment in the plane. What is the set of all points B in the
plane, but not on line :@: such that mzZABC' is greater than msBAC?

- 25 -
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Round One Team Test October 1991

Part i: Although the first two parts may seem like just a lot of algebra (think of it as
good practice), when combined they prove the rather interesting assertion that given any
square set there exists a positive integer which can either join the given set or replace any
of its elements to create a new square set.

We know that the sum of the products of all pairs of numbers in the set {a;,as2,...,a,}
is a perfect square since this is a square set. Call this number z? and let the sum of all the
elements be s. Then the definition of b can be rewritten as b = s + 2x. We must now check
to see if the set {aj,as,...,an,b} is a square set. The sum of the products of all pairs is

(a1a9 + araz + -+ + ap_10,) + (@b + - +azh) = 2* +sb
x? + s(s + 2z)
(x + s)2
Sure enough, the result is a perfect square.
Part ii: This computation will be very similar to the last one. Let z? and s be as before.
and suppose without loss of generality that a; is the element of the set being replaced by .

y (The same argument will apply for any a;, so we choose a; for convenience.) The sum of the
\, products of all pairs in the new set is

aoa3 + aoayq + -+ + ap_1a, + bag + - - - + bay,
= (a1a2 +a1a3+ -+ an_1an) —ar(as + - a,) + blag + -+ - + ay,)
x? —a1(s —ay) + b(s — ay)
224+ (b—a)(s —ay)
2?4+ (s+22 —a1)(s — ay)
2 4 2x(s — ay) + (s — a;)?
= (z+s—a)

Bingo, a perfect square.

Part iii: We are given an integer ¢ which is the sum of two integer squares, so we can
write ¢ = a® + b%. We now want to write 2¢ = 2a2 + 2b% as the sum of two squares. By
introducing some extra terms we have

2 = a® 4 2ab + b* + a* — 2ab + b°.

It is now clear that 2q = (a + b)% + (a — b)?, proving the first half of the claim. How might
one stumble onto this result? Experimenting with the algebra is one possible method; trying
several examples and looking for a pattern is another. For example,

212+ 1% = 0% 422
L - 2(12+2%) = 1243?
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2(1% + 3%) 22 4 42
2(17 + 4% = 3% 452

and so on. It is now a little easier to find or guess the correct representation for 5q. Pro-
ceeding as above we discover that

5q = 5(a® + b?) = 4a® + 4ab + b* + a* — 4ab + 4b* = (2a + b)? + (a — 2b)?,

so 5¢ can also be written as a sum of two squares.

Part iv: We employ the method of infinite descent. Suppose that it is possible for
both ¢ and 3¢ to be the sum of two integer squares. Then we could write ¢ = a? + b* and
3¢ = ¢ + d* Recall that ¢* and d? leave a remainder of either 0 or 1 when divided by 3.
Since ¢® + d? is a multiple of 3 it must be the case that both ¢ and d? are multiples of 3 (try
all four possibilities), which means both ¢ and d are multiples of 3. Therefore we let ¢ = 3¢
and d = 3d'. Substituting into the equation 3¢ = c2 +d? we find that 3¢ = 9¢* +9d'?, so that
y = 3?4+ 3d"?. which means that g is a multiple of 3. Taking advantage of this fact. we write
¢ = 3¢'. which simplifies the last formula to ¢’ = ¢ + d’?. Incorporating our substitutions
into the very first equation yields 3¢’ = a? + b%.

In summary, we have deduced that if ¢ = a? 4+ 4% and 3q = ¢ + d? then ¢ = % + d”
and 3¢’ = a® 4+ b*, where ¢’ = ¢/3 is an integer. But this brings us back to exactly where we
started! Now both ¢’ and 3¢" are the sum of two integer squares. Hence we can repeat this
argument over and over. each time dividing ¢ by another factor of 3. We deduce that if ¢
has the property that both ¢ and 3¢g can be expressed as the sum of two squares, then ¢/3*
also has this property (and in particular is an integer) for every positive integer k. But this
is absurd: no positive integer has infinitely many factors of three.

Part v: Label the three consecutive numbers n — 1, n, and n + 1. The sum of their
squares is (n — 1)2 4+ n% + (n + 1)? = 3n? + 2. This number clearly leaves a remainder of 2
when divided by three, so it cannot be a perfect square, according to the facts section. Now
that wasn't too hard, was it?

Round Two Team Test December 1991

Part i: We approach this problem in a systematic manner. Since sin « appears in the
problem, it makes sense to apply the law of sines to a triangle containing angle o. The most
likely such triangle in the diagramn is AADC'. Hence we can write sina/CD = sinC/AD. In
the same manner we can write equations involving each of the other angles 3, 6, v, ¢, and (.
What else do we know? Ceva’s theorem states that AD, BE, and C'F are concurrent if and
only if (AF)(BD)(CFE) = (AE)(CD)(BF). Using the above equation we can solve for C D
to find CD = (ADsina)/sinC, and similarly we can solve for the remaining five lengths.
Substituting in for all six lengths we conclude that AD, BE, and CF are concurrent if and
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only if

ADsina\ (BEsind\ (CFsinc\  (ADsinf\ /BEsiny\ (CFsin(

( sin C )( sin A >< sin B )_( sin B )( sin C' )( sin A )’
which reduces to (sina)(siné)(sine) = (sin3)(sin~y)(sin{) when the common factors arc
canceled.

Part ii: We label angles ZCAD' = o/ and ZBAD’ = [’ for convenience. Since AM is
the angle bisector of angle ZBAC' it is clear that the image of line AB is line AC after a
reflection over AM. In addition, the image of line AD is line AD’ according to the hypotheses
of the problem. Therefore the image of angle ZBAD is angle ZCAD'. In particular, these
two angles are congruent, so o = (. The same reasoning shows that @ = «a. Similar
relationships hold between the angles formed at the other two vertices of AABC.

If AD. BE, and C'F are concurrent then (sin«)(sin é)(sine) = (sin 8)(sin+)(sin¢). Sub-
stituting the primed angles using the above equations yields

(sin B (sin+')(sin ¢’) = (sina’)(sin &) (sin ).

By part i this is exactly what we need to conclude that AD', BE', and C'F’ are concurrent.
Part iii: In this proof we will adopt the common shorthand notation of referring to
m<A simply as A, and similarly for mzB and mzC. In order to apply part i we need only
compute each of the angles «, 3, 6, 7, ¢, and ( in terms of A, B and C. The first two are
simiple: since line AD is the angle bisector of ZA we know that &« = 0 = A/2. Finding 6
and ~ is a little more complicated. Let O be the circumcenter of AABC and draw segments
AO, BO, and CO, each radii of the circumcircle. (Of course line BO
is the same as line BE.) Then mZBOA = 2C since ZBOA is a central
) angle subtending the same arc of the circumcircle as the inscribed angle
/BCA. Also, ABOA is isosceles since both AO and BO are radii. Thus
A 6 =msOBA = 1(180—2C) = 90— C'. By the same reasoning y = 90— A.
B C Finding ¢ and ( is again fairly straightforward. Since C'F is an altitude
ACF B is aright triangle. Hence e = mZBCF = 90— B.and ( = 90— A
in an analogous manner.
Using the condition derived in part i for concurrency we find that AD, BE, and C'F are
concurrent, if and only if

A

sin(A/2) sin(90 — C) sin(90 — B) = sin(A/2) sin(90 — A) sin(90 — A).

This equation is equivalent to cos? A = cos B cos C once we cancel the common factor and
use the identity sin(90 — x) = cos x.

Part iv: We have already encountered a similar situation in the previous problem. when
we used altitude C'F and right triangle ACF B to compute ¢ = 90 — B. Now AD is also an
altitude, so right triangle AADB implies that 8 = 90 — B as well, hence ¢ = . Chasing
angles in the other right triangles demonstrates that o = v and 6 = { as well.

The condition found in part i now follows trivially since it reduces to (sin a)(sin ) (sine¢) =
(sin o) (sin &) (sin €) using the pairs of equal angles. Therefore the altitudes are concurrent.
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Part v: How can we incorporate the hypotheses? Since AD, BE, and C'F are concurrent
we know by Ceva’s theorem that

(AF)(BD)(CE) = (AE)(CD)(BF). (1)
We are also given concurrent cevians DP, EQ), and F'R so we know that
(DQ)(FP)(ER) = (DR)(EP)(FQ). (2)

Triangles such as AAPF and AAPFE seem like strategic sites for an application of the
law of sines because their sides include lengths in both of the above equations. Hence we
write sin 3/FP = sin(£ZAPF)/AF and sina/PE = sin(£APFE)/AE. Since ZAPF and
£/APE are supplementary their sines are equal. Dividing these two equations to eliminate
this common quantity yields sin§/sina = (FP/EP)(AE/AF). In the same way we can
arrive at the corresponding equations siny/siné = (DQ/FQ)(BF/BD) and sin(/sine =
(FR/DR)(C'D/CFE). Multiplying all three equations together yields

sin@sinysin¢  (FP)(DQ)(ER) (AE)(BF)(CD)

sinasinésine  (EP)(PR)(RD) (AF)(BD)(CE)

The right hand side of the above equation completely cancels using equations (1) and (2), so
we are simply left with (sin«)(siné)(sin¢) = (sin 8)(siny)(sin (). But by part i this means
that AP. BQ). and C'R are concurrent as we wanted.

How does one know when to multiply and divide? Keep in mind that we want to use
equations (1) and (2) to eventually cancel lengths and end up with something like part i.
If this doesn't work, then just experiment! When the lengths don’t cancel appropriately.
perhaps multiplication was called for rather than division, or vice-versa.

Round Three Team Test January 1992

As mentioned in the essay on the Pancake Theorem we are restricting ourselves to only
smooth convex figures in these problems in order to avoid pathological counterexamples. For
example, even the notion of length (intrinsic to bisecting a boundary) is tricky; there exist
continuous bounded loops in the plane which have infinite length.

Part i: Draw the tangent line p to the curve A at point P. Next draw the two
lines through P that make 60° angles with p (and thus with each other), as in the di-
agram. These three lines divide A into three regions. Let K be the total area en-
closed by A, and call the three smaller areas K;, K,, and Kj. If any of K;, K.
or A3 is equal to K/3 then we are done. Otherwise one of K;, K,, or K3 must be
less than K/3, for if all were greater than K/3 we could conclude that K; + K, +
K3 > K, contradicting the fact that Ky + Ko + K3 = K. Similarly, one of Kj,
K,, or K3 is greater than K /3. Now smoothly rotate the 60° angle enclosing the area
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less than K/3 onto the 60° angle enclosing the area greater

than K/3, keeping point P fixed throughout. The amount

of area enclosed will vary continuously from less than K/3 m
to more than K /3, so at some point during the rotation a P

60° angle will enclose exactly one-third of the area. P

Part ii: Choose an arbitrary point P on A, and draw the tangent line p to A at P. Also
draw the second tangent parallel to p on the opposite side, and draw the two tangents on
either side of A that are perpendicular to p. We now have a circumscribed rectangle; let a
and b be the lengths of its sides with P on the side of length a. We construct a function
f defined by f(P) = b — a which measures the difference in side lengths of the rectangle
based at a particular point of the curve. Observe that the rectangle is tangent to the curve
at P and three other points. Let @ be one of the adjacent points of tangency and note that
f(Q) = a—bsince Q lies on the side of length b. If f(P) = 0 then a = b and the rectangle is
a square, so we are done. Otherwise consider f(R) as point R moves along the curve from
P to ). The function f ranges from b —a at P to —(b — a) at @, so at some intermediate
point f(R) = 0 and we obtain the desired square by basing it upon this point R.

Part iii: The proof of this assertion mirrors the area-bisecting lemma in the Pancake
Theorem essay almost exactly, so | will only outline the details here. Translate the line [
completely to the left of B so that the length of the perimeter to the right of the line is
d. Now smoothly translate the line across the figure B, always parallel to [, until none of
the perimeter is to the right of the line. The length of the perimeter to the right of the
translated line has decreased continuously from d to 0, so at exactly one position inbetween
that length equaled d/2. yielding the unique line which bisects the perimeter.

Notice that it is possible in some cases for the length of perimeter to jump discontinuously!
For example, iimagine a unit square in the Cartesian plane with vertices at (0,0), (1,0), (0. 1).
and (1,1). As a line parallel to the y-axis moving to the right crosses the origin, the amount
of perimeter to the right of the line jumps from 4 immmediately to 3. This phenomena only
occurs if part of the perimeter is a straight line segment, a possibility ruled out (precisely
for this reason) by the hypotheses of the problem.

Part iv: Students at the Science Academy in Austin submitted a clever solution which
I shall present here. Choose any point () and designate a reference line ¢ through . Then
we know there are unique lines [ and [; parallel to ¢ which bisect the area and perimeter
respectively. If by some fantastic stroke of luck these lines coincide then we are done:
otherwise assume for sake of argument that [k is to the left of [;. Now rotate line g about
@ through 180° and observe the action of [k and ;. If these two lines never coincide then
k¢ remains on the same side of l; throughout so that lx winds up to the right of I after
q has rotated 180°. But this is impossible because (g and l; must return to their original
positions, since ¢ returns to its starting position after a 180° rotation. Therefore at some
point [, and l4 coincide, and this is the desired line.

Part v: We first prove a slightly messy lemma.

LEMMA: Let P be a point on the smooth convex curve B, let p be the tangent line at P.
and let m be a second line through P distinct from p. Consider a line [ parallel to p which
intersects the region enclosed by B. Lines [, m, and the curve B enclose a region with area
K’ whose perimeter includes a piece of length d’ from B, as illustrated below. Then as [
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approaches p the ratio K’/d' tends to 0.

. . . . d'

PROOF: The challenge in proving this lemma is figuring » e— /‘P’ et
out a neat approach; the actual mathematics is simple. Let | - / K 5 h >
() be the point, of intersection of line [ and the curve B, Qg

and construct line n through @ parallel to m creating a
parallelogram as shown at right. We also let b be the base m n
and h the height of this parallelogram, so that its area is bh. Notice that this parallelogram
surrounds the region of area K', so K’ < bh. In addition we observe that d’ > h since the
shortest distance between two lines is the perpendicular distance. Thus
K' bh _bh _
N
and as [ approaches p the distance b goes to 0, proving the lemma.

We will now construct points L, M, N, and P. The first step is to use part iv to choose a
line that bisects both the perimeter and area. Label the points where this line intersects the
curve L and M. If we choose P on LM then K1 = K/2 and d; = d/2 so K,/d, = K/d as
desired. All that remains is to choose P on LM and the point N somewhere on B between
L and M so that K,/dy = K/d, because then K3/ds = K/d automatically, as you can check.

To accomplish this we will move a line [ continuously from be-
L* I start ing tangent to B at L to being tangent at M. One method of
%7 accomplishing this is to start with [ tangent at L. translate [
ﬁ towards M until it reaches the midpoint of LM, then rotate !
/ end about the midpoint until it is parallel to the tangent at M, and
finish translating it down until it is actually tangent to B at M.
Why is this useful? Keep track of the area and perimeter that are above [ and to the right
of LM. By the lemma this ratio starts out very small, certainly less than K/d. But near M
the ratio must be larger than K/d, because by the lemma the corresponding ratio of area
to perimeter below [ is very small. (Check the algebra as an exercise.) Thus the ratio is
exactly A/d for some position of [ along the way. This position determines the remaining
two points I” and NV, completing the construction.

b,

{(:} <> =2
Round Four Team Test March 1992

Part i: Since n is an even positive integer, n/2 is a positive integer. Thus n/2 has a

base three representation
%:bk3k+"'+b13+bo, b; =0,1,o0r 2.

Multiplying through by 2 yields

n= a3+ + a13 + ao, a; =0,2,0r 4,
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where a; = 2b;. In other words, by doubling an integer we obtain an even integer, and
doubling the base three representation for that integer yields a corresponding representation
for the even integer.

Part ii: Once we allow digits other than 0, 1, or 2 in the base three representation of
a number it becomes possible to write an integer in many different ways. For example, we
can write 5 = 1(3) + 2(1) = 12(3) as usual or write 5 = 2(3) — 1(1). After experimenting
a bit the following observation becomes clear: if n = ax3* 4+ --- + a13 + ao is a base threc
representation then we can create an alternate base three representation by replacing a; by
a; —3 and a;;1 by a;41 + 1. The value of the sum doesn’t change since we first decrease the
sum by 3(3%) and then increase it by 3**!, leaving the overall sum of n unchanged. Likewisc
we can also replace a; by a; + 3 and a;41 by ai41 — 1.

We can use this observation to alter a normal base three representation n = a;3%+4 - - +
a13 + ao into one which only uses the digits -1, 1, and 3 by changing one digit at a time
beginning with the one’s place. If ap = 0 then increase a¢ to 3 and decrease a; by 1. If
ap = 1 there is no need to alter this digit, and if ap = 2 then decrease ag by 3 down to -1 and
increase aj by 1. The result of this algorithm is that ag is now equal to one of the desirable
digits -1, 1, or 3. and a; equals one of the digits -1, 0, 1, 2, or 3. As before we need only
change a; if it equals either 0 or 2, and we can proceed precisely as we did for ag. Now a,
is also either -1. 1. or 3, and a, lies between -1 and 3. Continuing this process for each digit
will eventually produce the desired alternate base three representation.

A second proof is motivated by the fact that the coefficients -1, 1, and 3 are each one less
than the coefficients 0, 2, and 4 needed to represent an even positive integer. This suggests
writing n as the difference of an even integer (written as in part i) and a base three number
11...1(3 with the same number of digits. We leave the curious reader the task of carrying
out this idea. Query: Can the reader discover more such triples of integers besides {—1, 1.3}
that work in the same way? For instance. every integer can also be written as a sum of
powers of 3 with coefficients {—1,0.7}. (Try to prove this!) With a little research this topic
might turn into a fun paper.

Part iii: The primary challenge in this problem is setting it up clearly. For this reason we
use “scientific notation” to write m in the form m = x10™ where n is a positive integer and x
is a terminating decimal with 1 < x < 10. For instance, we would write 3142 = 3.142 x 10°.

With these conventions it follows that 0 < logz < 1 and logm = n + logx, so that
{logm} = logz. Thus 0 < {logm} < log2 is equivalent to 0 < logx < log2, which occurs
if and only if 1 < x < 2, i.e. when z has initial digit 1. But x and m clearly have the same
initial digit since they differ by a multiple of 10™. Thus 0 < {logm} < log2 if and only if
m has initial digit 1, Which Was What We Wanted (W?3). The second part of the question
follows at once since log 3k = k(log3).

Part iv: The facts section tells us that any real number o can be approximated by a
rational p/q to within an accuracy of +1/¢* for infinitely many positive integers q. This
can be written |a — p/q| < 1/q%. Multiplying by q yields |ga — p| < 1/q, which means the
multiple ga is within 1/q of the integer p. Since this is true for infinitely many ¢ we can
find multiples of « arbitrarily close to an integer, since the quantity 1/q approaches 0 as q
goes to infinity. This approximation theorem was proved by Dirichlet using the Pigeonhole
Principle and is discussed in the classic book by Hardy and Wright, The Theory of Numbers.
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Part v: Choosing oo = log3 and only considering multiples glog3 with ¢ > 10 (so
that 1/q < .1) we conclude by part iv that infinitely many multiples of log 3 lie within .1
of an integer. This occurs if and only if 0 < {glog3} < .1 or .9 < {qlog3} < 1, by the
definition of {x}. Considering our result from part iii we would hope that the former case
occurs infinitely often, but this is not immediately clear. One of the two cases must occur for
infinitely many g. If it is the former, then proceed as in the next paragraph. Otherwise there
are infinitely many ¢ such that .9 < {qlog3} < 1. Choose any one of them and call it go.
Then choose a larger one g such that {golog3} < {gqlog3}, that is, ¢ > ¢o and glog 3 is closer
to an integer than gqlog3. There are infinitely many such integers ¢ since the multiples of
log 3 become arbitrarily close to integer values. Let (g1, ¢2,qs,...) be a list of these positive
integers. By construction q; — qo is a positive integer with {(g; — go)log3} < .1 (convince
yourself of this!). In the same way {(g: —qo)log3} < .1for all ¢ > 1, and the positive integers
(g1 — qv.q2 — qu. g3 — qQu. .. .) are all distinct.

We have shown that in either case there are infinitely many positive integers ¢ such that
0 < {qlog3} < .1. Since log2 ~ .30103 these multiples certainly lie within log2 of an
integer. Therefore by part iii we conclude that infinitely many powers of three have initial
digit 1.

< - g
Round Five Team Test April 1992

Part i: The following solution was discovered by Chapel Hill and St. John’s High School.
Suppose that such a point exists. Then triangles AAMD and AADC are similar because
they share a common angle at vertex A and ZADM = Z/ACD as well. Thus the sides have
a comnion ratio, so (AD/AM) = (AC/AD), or AD* = (AM)(AC). In other words. AD has
length equal to the geometric mean of AM and AC. But we know both these lengths, so
we can also compute AD. Then we need only draw a circle through A with this constructed
radius; this circle will intersect line [ exactly once to the right of M. Therefore if point D
exists it 1s unique.

This construction also proves that such a point exists. If we construct D as described
above then we can work backwards, using the common ratio to prove triangles AAM D and
AADC are similar, which shows that ZADM = ZACD. Hence exactly one point D fulfills
the conditions of the problem.

Part ii: This result now follows quickly using the A
same type of argument given above. Can the reader
fill in the details? We provide an alternate solution.
Suppose that points P and D are given as described
in the problem. Label mZADM = m/ACD = z and l ]

mzsAPM = msACP =y, as in the diagram. Then B o>
X
msPAD +msPCD = (180° — & — y) + (x + y) = 180°, 5 ©
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from which we conclude by the facts section that APCD is a cyclic quadrilateral. This is
extremely useful, for now ZADP and £ZAC P both subtend the same arc of the circle, so they
are equal. Hence x = y which makes AAPD isosceles, so that AP = AD.

Part iii: The hypotheses of the question yield the diagram
at left, with equal angles marked. Just as in part i we can use
similar triangles to deduce that (AD)? = (AM)(AC). In an
analogous manner we can prove that triangles ACMQ and
ACQA are similar, using their common angle ZACQ and the
- l M . fact that ZCAQ = 2£CQM. From the common ratios we can

QWD conclude as before that (QC)? = (CM)(CA). Adding these
fo equations yields

A

(AD)? + (QC)? = (AC)(AM) + (AC)(CM) = (AC)(AM + MC) = (AC)>2.

Therefore by the Pythagorean Theorem we can conclude that AD, QC', and AC would form
the sides of a right triangle.

Part iv: It seems reasonable that the locus could be an arc of a circle. However, proving
this guess is a two step process, much like an if and only if proof. To show that the locus is
an arc of a circle one must first prove that if a point satisfies the conditions of the problem
then it must be on the arc, and next also show that if a point is on the arc then it satisfies
the conditions of the problem.

Recall that in the first problem we proved that AAMD and AADC were similar. thus
LAMD = £ADC. Now as line [ moves parallel to its original position ZAMD does not
change. so ZADC remains constant as well. However, given fixed points A and (' the
collection of all points D to the right of [ such that ZADC is a given constant angle is an
arc of a circle. (The proof of this theorem is based on nothing more than the results in
the facts section. If it is unfamiliar to you I recommend a geometry text such as Coxeter
and Greitzer's book Geometry Revisited from the Mathematical Association of America.) To
construct this arc just circumscribe a circle about A, C, and the original point D. All points
in the locus lie on minor arc ADC between A and C. A

To finish the other half of the problem suppose D' is an
arbitrary point on minor arc ADC'". Draw a line [’ parallel .
to [ through D’ intersecting AC at M'. Then M’ D'y

-4
LAM'D' = ZAMD = £ADC = /AD'C, - ( l\k%

so that triangles AAM'D" and AAD'C are similar. Hence
LAD'M' = £ACD'" which means that D’ is part of the locus.
Since D' was a generic point on arc ADC' all points of the arc are part of the locus.

Part v: An elementary theorem from plane geometry states that the longest side of a
triangle is opposite the largest angle, while the shortest side is opposite the smallest angle.
Therefore asking that m£ZABC > m/BAC is equivalent to requiring AC > BC. But given
segment AC' the set of all points in the plane such that AC > BC'is clearly the interior of
the circle centered at C' with radius AC. Hence the desired set consists of all points in the
interior of this circle, excluding those on line AC'.
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Mandelbrot Morsels

Sylvester’s Theorem

1992-93

The topic for team test two this year is combinatorial geometry, a fascinating field of study
whose basics are easy to understand but likely are unfamiliar to the majority of high school
students. This branch of mathematics combines elements of plane geometry (such as points,
lines, distances, and areas) and combinatorics (counting techniques) while introducing some
new strategies for solving problems. All will become clear during the following presentation
of a classic theorem from combinatorial geometry. It is

THEOREM: (Sylvester’s Theorem) Given n distinct points in the plane, not all collinear.
then there exists a line that passes through exactly two of the points.

First, *not all collinear” means that the points don’t all lie on the same line. (The claim
wouldn’t be true if all the points were collinear, except when there were only two points.)
Sylvester’s Theorem implies that it is impossible to situate a finite num-
ber of points in the plane in such a way that the line through any two
of these points always passes through at least one other of our points.
The problem is trivial if there are only two points, and still pretty clear if
there are only three or four points. But how can we be sure that there ex-
ists a line through precisely two points in the diagram pictured at right,
where n = 1127 It turns out that the proof relies on a technique that I
call the minimization principle, which basically means, “decide on some geometric quantity
that can be measured (length, area, angle measure, etc.) and choose the configuration of
points or lines which minimizes that quantity.” With this principle in mind we begin the
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PRrROO¥: Since the theorem is trivial for n = 2, we assume

, that n > 3. To any three points A, B, and C' among the

B p set of given points we associate the following geometric

! quantity: the distance from point A to the line through

points B and (', indicated by a dashed line in the example

shown to the left. Choose the set of three points (call

them P, @), and R) which have the smallest positive such distance. If two or more distances
tie for the smallest positive distance, choose any one of them.

Since the points are not all collinear we can find at least one

set of three points which form a triangle, so that at least one such

distance is positive. As there are only a finite number of points

there are only a finite number of ways to choose the three points

P, @, and R and consequently only a finite number of distances

determined by the above process. Thus a smallest positive dis-

tance always exists.

How does this help? We claim that the line through @ and R

(call it [) is the desired line! For suppose that there were another

point S lying on [, and consider two cases. First, if one of the three points, say @, is situated
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at the foot of the altitude from P to [ then consider the distance from point @ to the line
through P and S. Clearly this distance is less than the distance determined by points P,
Q. and R. since the hypotenuse of a right triangle is longer than either of the legs. This
contradicts the fact that we initially chose the minimum such distance.

Therefore none of the points can be situated directly at the
foot of the altitude from P to [; so two of them, say R and S, lie
on the same side of the foot of the perpendicular. Let R be the
point closer to P, and consider the distance from R to the line
through P and S. Exploiting the similar right triangles (the ones
sharing common angle ZPSR) we can show that this distance is
smaller than the original one. again contradicting its minimality.
We are forced to conclude that there could not have been a third
point on [, proving Sylvester’s theorem.

This is a very clever problem which is a bit too difficult to appear on a team test. The
important thing to remember is the minimization principle — you will need this strategy to
solve some (but not all) of the problemns on team test two. Note that I took the liberty
of skipping a few steps, such as the argument with the similar right triangles, and went
overboard explaining how | set up the minimization principle. You can go through the
set-up more quickly in your proofs, but don’t omit any steps; prove all of your claims.

Best of luck on the team tests this year, and | hope you become interested enough in
combinatorial geometry to look up sonie more theorems or maybe try to create some of your
own. Just for fun, try to construct a counterexample to Sylvester’s theorem using an infinite
number of points.
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Facts: The Cauchy-Schwarz inequality is named after the Frenchman and German who
each formulated it independently at about the same time. The inequality states that given

two sets of real numbers {ay,az,...,an} and {b1,bs,...,b,} then
(a%+ag++ai)(b%+b%++bi) > (a1b1 +a2b2+"'+anbn)2.

Equality is achieved if and only if one set of numbers is a constant multiple of the other. In
other words. there is a real number A such that by = Aay, by = Xaq, ..., and b, = Aa,: or

vice versa, with a; = Ab; and so on.

\
>

Al

Problems:

Part i: Prove the Cauchy-Schwarz inequality, including where equality is attained, in the
case n = 3. (Hint: try n = 2 first.)

Part ii: Show that if o« and 5 are angles in the first quadrant (0° < a, 5 < 90°) then

cos®a  sin®a
cos  sinf

) cos(a — 3) > 1.

Part iii: Suppose that o and 3 are angles in the first quadrant. Prove that if

+ —
cos 3 sin 3

((:033 a sinda

) cos(a — ) =1
then o = (.
Part iv: Let xy, xs, ..., and x, be positive real numbers. Prove that

@4zl @R+l A+ 42 > @+l 4+ 20 @R+ )+ + 22,

n

and find where equality holds.

Part v: At a wedding reception n guests have assembled into m groups of various sizes to
converse. The host is preparing m square cakes, each with an ornate ribbon adorning its
perimeter, to serve to the m groups. Due to dietary restrictions no guest is allowed to

partake of more than 25 em? of cake. Prove that no more than 20v/mn cm of ribbon is

needed to embellish the 1 cakes. (This is useful to know if you are buying the ribbon!)

N /
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Mandelbrot Competition

Division B Round One Team Test

Facts: The Cauchy-Schwarz inequality is named after the Frenchman and German who
each formulated it independently at about the same time. The inequality states that given

two sets of real numbers {a1,as,...,a,} and {by,ba,...,b,} then
(0F + a5+ -+ aZ) (B} + 05 + - +b05) > (arby + asby + - - + anbn)®.

Equality is achieved if and only if one set of numbers is a constant multiple of the other. In
other words, there is a real number A such that b; = Aay, by = Aag, ..., and b, = Aa,; or

vice versa, with a; = Ab; and so on.

Y

9%
\
Problems:
Part i: Prove the Cauchy-Schwarz inequality, including where equality is attained, in the
case n = 2.

Part ii: Show that if a and § are angles in the first quadrant (0° < «, 8 < 90°) then

cos® a N sin® o
cos 3 sin 3

Part iii: Suppose that o and @ are angles in the first quadrant. Prove that if

> cos(a — 3) > 1.

<0083 a sina

cos (3 * Sinﬂ)cos(a—ﬁ) =1

then o = .

Part iv: Let x1, a2, ..., and x, be positive real numbers. Prove that
(i +as+ 4 ad) (@t aet x> (@ a2l (@ o+ T,

and find where equality holds.

Part v: At a wedding reception n guests have assembled into m groups of various sizes to
converse. The host is preparing m square cakes, each with an ornate ribbon adorning its
perimeter, to serve to the m groups. Due to dietary restrictions no guest is allowed to

partake of more than 25 cm? of cake. Prove that no more than 204/mn cm of ribbon is

needed to embellish the m cakes. (This is useful to know if you are buying the ribbon!)

- J
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Mlandelbrot Competition

Division A Round Two Team Test

December 1992

In all questions assume that no three of the given points are collinear.
Part i: Show that among four points in the plane, no three of which form a right triangle.
there exists at least one obtuse triangle.

Part ii: Now show that out of n > 4 points in the plane, no three forming a right triangle

n
3

Part iii: Given n points in the plane, prove that one can find three of these points whose

as before, there exist at least i( ) obtuse triangles.

first outer medial triangle contains all remaining n — 3 points in its interior or sides.
Part iv: Again, given n points in the plane, prove that one can find three points whose
second outer medial triangle contains none of the other points in its interior.

Part v: Given 2n points in the plane, prove that one
Not good Good

can find at least n lines, each dividing the points in half
(n points on each side), such that different lines divide the 74 \/\

points into different sets.

4 N
Facts: Given n points in the plane, the number of ways to choose k of them is denoted (Z)
and can be computed using the formula (Z) = r’ﬁ)@, where k! = k(k—1)---(2)(1). For
example, (g) = 24321 — 10, so there are ten ways to choose a pair of points from among
five given points in the plane.

J

( N
Definitions: Given points A, B, and (', perform the following construction: through A.

B, and C pass lines parallel to BC, AC, and AB. re-
spectively. These three lines form a new triangle similar
A to AABC, whose sides are twice as long, and which has
A, B, and C' as the midpoints of its sides. Let’s call this
S c new triangle the first outer medial triangle. 1f we repeat
this construction on the vertices of the new triangle we

arrive at the second outer medial triangle,

. J

4 B
Problems:

J
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Mandelbrot Competition

Division B Round Two Team Test

December 1992

/

Facts: Given n points in the plane, the number of ways to choose k of them is denoted (Z)

and can be computed using the formula (2) = 2 where k! = k(k—1)---(2)(1). For

e kTR
example, (g) = 24321 — 10, so there are ten ways to choose a pair of points from among

five given points in the plane.

\

" Definitions: Given points A, B, and C|, perform the following construction: through A.
B, and C pass lines parallel to BC, AC, and AB, re-
spectively. These three lines form a new triangle similar
to AABC', whose sides are twice as long, and which has
A, B, and C' as the midpoints of its sides. Let’s call this

new triangle the first outer medial triangle. If we repeat

this construction on the vertices of the new triangle we

arrive at the second outer medial triangle.

9%
<

Y

Problems:

In all questions assume that no three of the given points are collinear.

Part i: Show that among four points in the plane, no three of which form a right triangle,
there exists at least one obtuse triangle.

Part ii: Suppose that n > 4 points in the plane are given, and k distinct triangles are
designated, each with vertices among the n points. Show that no more than k(n — 3) of

the (Z) groups of four points contain all three vertices of a designated triangle.

Part iii: There are ('3‘) triangles formed by n > 4 points in the plane, by definition.

Suppose there are fewer than %(g) obtuse triangles formed. Show that there is a group of

four points which doesn’t contain any of those obtuse triangles, and arrive at a
contradiction by producing another distinct obtuse triangle. Conclude that at least
one-fourth of all triangles formed by n > 4 points in the plane are obtuse.

Part iv: Given 2n points in the plane, show that there exist at least n different lines, each
of which pass through two points in the set and divide the remaining 2n — 2 points in half
(n — 1 points on each side).

Part v: Given n > 3 points in the plane, prove that one can find three points whose
second outer medial triangle contains none of the other points in its interior.

%
<
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Mandelbrot Competition

Division A Round Three Team Test

Y

~
Facts: Recall that the degree of a polynomial p(z) is the exponent of the highest power

of x, so the general form of a polynomial of degree n is p(x) = apx™ + - + a1z + ag. A
polynomial of degree n is uniquely determined by its value at n+ 1 points. This means that
the coefficients ao, a1, ..., a, are determined by the value of p(x) at n + 1 values of x. In
particular, if two polynomials p(x) and q(x) of degree n agree for n + 1 values of xr then
they must be identically equal. This relationship is written p(x) = ¢(x), which indicates
that p(x) and ¢(x) have the same coefficients and agree for all values of x.

We also recall the ever useful arithmetic mean-geometric mean inequality (AM-GM). It
states that the average of n positive real numbers is greater than or equal to the n'® root of
their product.

%
I
Problems:
a1 + 8ag + 27a3 + 640y = 1
. . S 8ay + 27a, + 64as + 125a4 = 27
Part i: Consider the system of equations: 97ay + 64ay + 12505 + 2160, = 125
64a; + 125a, + 216a3 + 343a4 = 343
These four equations determine a, aq, as. and ay. Show that
ar(z + 1% +ag(x+2)° +as(z 4+ 3)° + ag(z + 4)°* = 22+ 1)%.
Part ii: The fact that the above two polynomials are identically equal yields several
interesting relationships among the a;. Deduce the following two equations:
ar+az+as+ags =8 and 64a; + 27ay + 8az + a4 = 729.
Part iii: By considering a polynomial with roots 1, 1/2, ..., 1/n prove that
E.{.E_{_ .+E_L_..._—k2_+..+(_1)nﬁ—l
1 2 n  (1)(2) (n—1)(n) nl
fork=1,2,...,n
Part iv: Let ry, 7o, ..., 7, be n positive real numbers. Prove that for any = > 0,
TP+ re+ -+ ra\"
(;r+r1)(:r+r2)---(a:+rn)§(at-l— ! 2n ) .
Part v: Again, let ry, ro, ..., 7, be n positive real numbers. Prove that for any x > 0 we
have (x + i) (@ + 1) - (x + 1) 2 (x+ rire )™
J
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Mandelbrot Competition

Division B Round Three Team Test

\
Facts: Recall that the degree of a polynomial p(x) is the exponent of the highest power
of x, so the general form of a polynomial of degree n is p(z) = a,2™ + -+ + a1 + ag. A
polynomial of degree n is uniquely determined by its value at n+ 1 points. This means that
the coefficients ag, a1, ..., a, are determined by the value of p(x) at n + 1 values of z. In
particular, if two polynomials p(x) and ¢q(x) of degree n agree for n + 1 values of z then
they must be identically equal. This relationship is written p(x) = ¢(z), which indicates
that p(x) and g(x) have the same coeflicients and agree for all values of x.
We also recall the ever useful arithmetic mean-geometric mean inequality (AM-GM). It
states that the average of n positive real numbers is greater than or equal to the n*" root of
their product.
\ 9%
a I

Problems:

a; + 80,2 + 27&3 + 64&4 =1
.. . . ) 8a1 + 27&2 + 64(13 + 125@4 = 27
Part i: Consider the system of equations: 97a; + 64ay + 1255 + 216as = 125 °
64(1,1 + 125&2 + 216&3 + 343@4 = 343
These four equations determine a,, aq, a3, and a4. Show that
ar(x+1)° +ag(x +2)° +az(z +3)° + au(z +4)° = (22 + 1),
Part ii: The fact that the above two polynomials are identically equal yields several
interesting relationships among the a;. Deduce the following two equations:
a1+ ay +as+ag =8 and 64a; + 27a4 + 8asz + a4 = 729.
Part iii: Prove that
RO L m I
1 2 n  (1)(2) (n—1)(n) n!
by considering the polynomial with roots 1, 1/2, ..., 1/n.
Part iv: Let ry, ro, 73, and 74 be positive real numbers. Prove that for any « > 0,
T+ e+ 13+ re\?
(x+r)(x+r)(x+r3)(x+ry < <:v+ ! 24 5 4) .

Part v: Again, let 71, ry, 73, and r4 be positive real numbers. Prove that for any x > 0 we

have (x 4+ 7)) (x 4+ ro)(x + r3)(x + 14) > (T + YriTarary)?.
- J
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Mlandelbrot Competition

Division A Round Four Team Test

Facts: A rotation of the plane about a point O through an Al
angle o maps the point O to itself and carries a point A to

a new point A’ such that OA = OA’ and ZAOA" = a. A

rotation preserves distances: if a rotation maps points A and B o

to points A’ and B’ then AB = A’B’. A rotation also maps o¢ o A
lines to lines.

If points A, B, C, and D (in that order) all lie on the same circle then we say these points
are cyclic and we call figure ABC'D a cyclic quadrilateral. Properties of inscribed angles
show that ZABD = £ACD and m£ZABC + mZADC = 180°. Conversely, if B and (' lie
on the same side of line AD and ZABD = ZACD, then it follows that A, B, C, and D are
cyclic. Similarly if B and D lie on opposite sides of AC and m£ZABC + msADC = 180°.
then points A, B, C, and D are again cyclic.

\ J
s 3
Problems:
Part i: Let AABC' be an isosceles triangle 8
with AB = AC and having circumcenter O. Prove
that there exist rotations about both A and O which o
carry segment AB to segment AC. A N ©
Part ii: Let AABC be as above, and suppose points M and N on AB and AC are such
that BM = AN. Prove that the circle through A, M, and N passes through O.
Part iii: Using this result, show that if A} A, ... A, is a regular n-gon with an inscribed
regular n-gon BB, ... B, (with B; on A;A,, By on AyAj;, ..., and B, on A, A;), then the
circles through AB1A3By, AByA3Bs, ..., and AB,A;B; share a common point.
Part iv: Let line [ be rotated to a new line " about any point O through an angle o,
0° < a < 180°. Show that lines [ and !’ intersect in the angle «. Al
Part v: Suppose an angle ZBAC is rotated
about a point O to a new angle ZB’A’C". Assume that
the angle of rotation is between 0° and 180°. Let rays
AB and A’B’ intersect at M, and rays AC and A'C’
intersect at V. Prove that A, A’, M, N, and O all lie
on a single circle. Notice that there are several possible
diagrams.
N J
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Mandelbrot Competition

Division B Round Four Team Test

March 1993

Facts: A rotation of the plane about a point O through an A’
angle o maps the point O to itself and carries a point A to
a new point A’ such that OA = OA’ and LAOA' = o. A

rotation preserves distances: if a rotation maps points Aand B O ¢ A

to points A" and B’ then AB = A’B’. A rotation also maps lines to lines.

If points A, B, ', and D (in that order) all lie on the same circle then we say these points
are cyclic and we call figure ABCD a cyclic quadrilateral. Properties of inscribed angles
show that ZABD = £ACD and mZABC + m£ADC = 180°. Conversely, if B and C lie
on the same side of line AD and ZABD = LACD, then it follows that A, B, C, and D are
cyclic. Similarly if B and D lie on opposite sides of AC and mZABC + m£ADC = 180°,
then points A. B. (', and D are again cyclic.

2\

Problems:
Part i: Let AABC be an isosceles triangle with
AB = AC. ms/BAC = «. and having circumcenter O.

Prove that there exist rotations about both A and O

which carry segment AB to segment AC. A N ©
Part ii: Let AABC be as above, and suppose points M and N on AB and AC are such
that BM = AN. Compute the angle of rotation (in terms of a) needed to map AB to AC
with center O. Show that mzZMON equals this angle.

Part iii: Using this result show that the circle through A, M, and N passes through O.
Part iv: Let line [ be rotated to a new line !’ about any point O through an angle «,

0° < a < 180°. Show that lines [ and !’ intersect in the angle a. A’

Part v: Suppose an angle ZBAC is rotated about

a point O to a new angle £B’A’C’, where the angle of
rotation is between 0° and 180°. Let rays AB and A'B’
intersect at M, and rays AC and A'C" intersect at V.
Prove that A, A", M, N, and O all lie on a single circle.

Assume that the five points are situated as pictured in

the diagram.

J
<
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April 1993

Mandelbrot Competition

Division A Round Five Team Test

Facts: The two sys- a+b+c = d+e+f (1)
tems of equations to B+ +3 = B4+ (2

the right are equiva- {(a+b)+(b+c)+(c+a) = (d+e)+(e+fl+(f+d (3

lent; in other words,
each can be derived (@+b)(b+c)c+a) = (d+e)le+ f)(f+d) (4)

from the other. For example, cube both sides of equation (1), subtract equation (2). and
divide by three to obtain equation (4). Then multiply equation (1) by two to obtain equa-
tion (3). Working backwards, one can also derive equations (1) and (2) from equations
(3) and (4). Because each system implies the other, equivalent systems of equations have
exactly the saine solutions. This is helpful if one set of equations is easier to work with than
the other.

Yo

9%
Problems: W
Part i: Complete the argument started above by showing that equations (3) and (4)
together imply equations (1) and (2).
Part ii: Find six distinct integers a, b, ¢, d, e, and f which satisfy equations (1) and (2)
above. (In other words, trivial solutions such asa=0,b=1,¢=—-1,d=10,e =2. and
[ =—-2don’t count.)
Part iii: Prove that it is possible to divide any eight consecutive integers into two sets
such that the sum of the integers in each set is the same, and the sum of the squares of the
integers in each set is also the same.
Part iv: Show that given any eight consecutive integers one can split them into two sets
of four such that the sum of the cubes in one set subtracted from the sum of the cubes in
the second set is a constant.
Part v: Building on the pattern begun above, prove the following theorem by induction.

THEOREM: Given an integer k > 1 it is possible to divide any 25+ consecutive integers

into two sets {ay,as,...,asc} and {by,be,... box} such that
G+ a4+ 4 ayx = by +by+-o+ by

a2+ ai+--+ad = B+bi++ b2

af +as 4+ tab = Wb+ b
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Division B Round Five Team Test

Mandelbrot Competition

April 1993

Facts: The two sys- a+b+c = d+e+f (1)
tems of equations to B+ +3 = B+ (2

the right are equiva- {(a+b)+(b+c)+(c+a) = (d+e)+(e+NH+(f+d) (3)

lent; in other words,
each can be derived (@a+b)b+c)(c+a) = (d+e)(e+ [)(f +d) (4)

from the other. For example, cube both sides of equation (1), subtract equation (2), and
divide by three to obtain equation (4). Then multiply equation (1) by two to obtain equa-
tion (3). Working backwards, one can also derive equations (1) and (2) from equations
(3) and (4). Because each system implies the other, equivalent systems of equations have
exactly the same solutions. This is helpful if one set of equations is easier to work with than
the other.

Y

Problems:

Part i: Find six distinct integers a, b, ¢, d, e, and f which satisfy equations (1) and (2)
above. (In other words, trivial solutions such asa=0,0=1,c=—-1,d=0,e =2, and
/= —2don’t count.)

Part ii: Prove that given four consecutive perfect squares, the sum of the second and
third subtracted from the sum of the first and fourth is a constant.

Part iii: Using the previous part. prove that it is possible to divide any eight consecutive
integers into two sets such that the sum of the integers in each set is the same, and the
sum of the squares of the integers in each set is also the same.

Part iv: Show that given any eight consecutive integers one can split them into two sets
of four such that the sum of the cubes in one set subtracted from the sum of the cubes in
the second set is a constant, as in part ii.

Part v: Building on the pattern begun above, prove the following theorem by induction.
THEOREM: Given an integer k > 1 it is possible to divide any 25! consecutive integers

into two sets {ai, az,...,aoc} and {by,ba,... box} such that

a1+ as+ - +ag = by+byd oo+ by
ai+as+ - 4as = b+b+-+ bk

a¥+ak+ - tak = By+b5 4+ b

AN
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4:{"3 < O
Divisions A and B Round One Team Test November 1992

A-Part i B-Part i: For both n = 2 and n = 3 a purely algebraic proof can be
accomplished by expanding both sides, canceling common terms, and then grouping the
remaining terms into a sum of squares. Omitting some intermediate algebra we find

(e} +ad) (B +b3) > (arby + azbs)?

= (aby—azb)> > 0
and
(a% + ag + ag)(bf + bg + bg) > (a1by + azby + a3b3)2
= (a1by — azb1)® + (a1bs — ash1)” + (azbs — asby)® > 0

which proves the inequalities. Equality is achieved if and only if all summands on the left
equal zero, which does imply that one sequence is a multiple of the other. For example,
equality holds when n = 2 if and only if ajby — azb; = 0. If all the a; and b; are 0 then
(a1,a2) = (b1, b2) for any A. Thus we assume that one of the variables is nonzero; without
loss of generality b; # 0. Rearranging the above equation leads to a; = (‘;—i) by. Therefore
defining A = ¢ results in (a1, a2) = A(b1, b2). In either case we discovered that the sequences
must be proportional to satisfy ajby — azb; = 0. This mini-result can now be applied to
n = 3 to show fairly quickly that the two sequences are again proportional. Can the reader
fill in the steps?

A more standard (and cleaner) proof involves vector algebra. Let a = (aj,as,...,a,) and
b = (b1.by,.... b,). then use the formulas a-b = |a||b|cos (where 0 is the angle between
the two vectors), and a-b = a1b; + azbs + --- + anb, to write two equal expressions for
(a-b)°. The inequality arises from the fact that |cosf| < 1.
High School managed to prove, using algebra and trigonometric identities, that the given
statement was equivalent to an inequality in which a perfect square was greater than zero.
Equally impressive was the paper submitted by Arcata High School in which the given
inequality was proven equivalent to cos(a — ) < 1, which proves both parts ii and iii.

The proof we had in mind uses Cauchy-Schwarz with n = 2. Note that since o and 3 are
in the first quadrant their sines and cosines are positive. We now figure out how to choose
ay, aq, by, and by. The first factor in the product on the left hand side suggests that we

let a; = y/cos® a/ cos B and ap = \/sin3 a/sin 8. With the second factor a course of action

is less obvious. However, recalling that cos(a — #) = cosacos § + sinasin § we are led to
assign b; = v/cos a cos # and by = 4/sin asin 5. With these choices Cauchy-Schwarz implies

2
P .3 3 a3
cos®«  sin® o cos® sin® a
+ — cos(a — > y/cosacos 3+ - \/sinasin
( cos 3 sin 3 ) (cos( A) \ cosf b sin 3 b

= (cos?a+sin’a)? = 1.
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It is crucial to understand in this next problem what needs to be proven. One has to show
that the given equation implies that a = 3. Plugging in o = 38 and checking that the given
equation works is doing just the reverse! Put another way, one is showing that o = 3 is one
solution to the equation, but not showing that it is the only solution. A proof is obtained by
noticing the similarity between the given equation and the inequality in the previous part.
Since the inequality above was proven using Cauchy-Schwarz, equality is achieved if and only
if the two sequences {a1,a2} and {b;,by} are proportional, which is the same as requiring
that a1bp = asb;. For our particular choices of aq, as, by, and by this becomes

cosda - sin® o
V/sinasin§ = , \/cosa cos 3
cos 3 sin 3
<= sinfcosa = sinacos
& sin(f-a) = 0.

However, 3 — « is an angle between —90° and 90°, and the only angle in this range whose
sine is zero is the zero angle. Thus the last equation forces oo = 3, W.

A-Part iv B—Part iv: For notational convenience denote x¥ + & 4 --- + 2* by Si for
k a positive integer. Cauchy-Schwarz immediately prov1des a useful mequahty relatmg the
k+1 k4l —1 k-1
Si. Choosing our two sequences to be {If,xzﬂ . } and {:r] T ,22 oo an? ) owe
find that

(5 +af ) (B e ) 2 (x’f+x’§+~~+x§)2

or Si415k_1 > 52 in shorthand notation. We now multiply a sequence of these inequalities
together and cancel common terms (which are all positive) to obtain

Sa+2Sa 2 Sg+]
Sa+35a+1 Z Sg+2

%
2
8

Vv

2
Sb-l’

= 5.5 2 Sa+15-1.
The inequalities on both tests are of this type; choosing a = 19 and b = 93 yields the desired
inequality for the A test while taking a = 1 and b = 4 finishes the B test.

An alternate solution involves expanding the products found on each side, canceling
common terms, and finally showing that expressions like z%x%(x87%"! — 25-2" 1) (2, — x,) are
always zero or positive. We leave the details to the interested reader.

A-Part v B-Part v: One can often enhance the readability of a proof by using sug-
gestive notation. So we let the k' group contain px people, where p; + ps + -+ + pp, = n
since there are a total of n people. In the same manner we let s, be the side length of the
k" cake. Since no person may consume more than 25 cm? of cake and the area of the k!

piece of cake is s? we know that s2 < 25pk, or sx < 5./pr. The total amount of ribbon



23

is merely 4s; + 4s2 + - -+ + 45, which by the previous observation is less than or equal to
20y/p1 + 20/p2 + - - - + 204/pr. If we could only show that

20/p1 +20y/p2 + - -+ + 20y/pm < 20/mn

then we would be done. However, by Cauchy-Schwarz we know that

(VPP + (VP2 4 (VB)?) (P H P 12) > (VP + Vet -+ Vi)’
= (pr+p+-+pn)(m) = (Vor+ VP2t + Vom)

= (n)(m) > (Vpr+vP2t -+ )

= vmn > o1+ VP2t A+ Dm,

where the last step is reversible since both sides of the equation are positive. Multiplying
both sides of the equation by 20 completes the proof.

Divisions A and B Round Two Team Test December 1992

A—Parts i,ii B—Parts i,ii,iii: There are basically two possible configurations for the
four points: either they form a convex quadrilateral or one point lies inside the triangle
formed by the other three. These two cases are illustrated below. In the first case we know
that the four angles marked «, 3, §, and v sum to 360°. Therefore it is impossible for each

Case 1 Case 2
o

angle to be less than 90°. Since no angle is exactly 90° one of them must be obtuse, and it is
clear how to form a triangle with three of the four points which includes this angle. {What
would go wrong with this argument if the points did not form a convex quadrilateral. as
shown in the figure with a question mark?) In the second case the three angles marked a.
3, and v sum to 360° and similar reasoning shows that one of these angles must be obtuse;
it is again evident how to form a triangle which includes the obtuse angle.

A popular approach to showing that at least a quarter of the
triangles were obtuse went as follows. “Since we just proved that
at least one of every four triangles is obtuse, and %('3’) is one-fourth
of the total number of triangles, we are done.” The problem with
this reasoning is that it only works for four points at a time; if you
try to generalize immediately to n points you may be overcounting the obtuse triangles.
In the figure to the right two quadrilaterals are pictured. However, only one-seventh (not




one-fourth) of the triangles shown are obtuse because the two quadrilaterals share the obtuse
triangle! This is why the above argument is invalid.

To avoid overcounting we adopt another strategy. Given n points, let there be a total
of k obtuse triangles. How many groups of four points contain a particular obtuse triangle?
This is easy — the obtuse triangle already accounts for three of the four points, so there
are n — 3 points left which can have the honor of being the fourth point for a total of n — 3
groups of four points. Since there are k obtuse triangles altogether at most k(n — 3) groups
of four points contain one of them. (It is possible that there may be fewer since two of the
triangles might be part of the same group of four points.)

What would go wrong if k£ < i(’;)" These k obtuse triangles are part of at most k(n —3)
groups of four points by the above. But

1{n nn—1)(n—2)(n—3) n
k("_3)<5<3>("_3)= 1-3.2-1 =<4>'

Since there are a total of <Z> groups of four points this means that there is a group of four
points which doesn’t contain any of the k obtuse triangles, contradicting our result from the
first paragraph.

A-Parts iii,iv B-Part v: Let us make a few ob-
servations about medial triangles. It is simple to prove
that in the first outer medial triangle all four smaller tri-
angles are congruent. It follows, for example, that lines ! iy
and [" are parallel. Since the second outer medial trian-
gle is formed from the first one in the same manner, we

can further deduce that lines [, ', and I” are parallel and '/ '/ N -
n 1
n

lelI
l
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equally spaced; as are lines m, m/, and m” and lines n,
n’, and n”. (The geometric details in a rigorous proof of
this statement are tedious but should be obvious enough to omit from your write-up.)
p Choose three points A, B, and C' which form a triangle
< A A » of maximal area, which can certainly be done since there
are only a finite number of triangles. If more than one
B c triangle has the same maximal area any one of them will
do. We claim that the first outer medial triangle of this
triangle contains all the remaining points in its interior or
on its sides. For if a point lay outside the first medial triangle then it must be located
opposite one of the sides of the first outer medial triangle, such as the side containing A as
indicated below. But if this is the case then APBC has greater area than AABC since
APBC has the same base but greater height than AABC'. This contradicts the fact that
NABC was a triangle of maximal area. Therefore no points can lie outside the first outer
medial triangle of points A, B, and C.

Before continuing, we pause to speculate on what other interesting problems are lurking
within the diagram composed of nothing more than the plane and a collection of n points.
What if we choose the three points which form the smallest or largest angle? What properties
do the two points which are closest together have that possibly no other pair of points satisfy?
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What about the two points farthest apart? What can be deduced about the three points
which form the triangle of smallest perimeter? With a little imagination you can come up
with some other “minimal” configurations and investigate the properties of those particular
points. As incentive, try the following problem. Given n points in the plane, not all collinear.
prove that one can find three points whose circumcircle contains none of the other points in
its interior. All the ideas you need for a solution are listed somewhere in this paragraph.

It should come as no surprise to find that three points A, B, and C' which form a triangle
of minimal area also have interesting properties. We claim that no other point lies within the
second outer medial triangle of AABC. 1If a point P
does lie within the interior then it must be located in (or
on the edges of) one of the four regions outlined by the

heavy lines at right. Suppose that P lies inside AABC. Fo

Then clearly AP BC' has smaller area, contradicting the 2

way we chose A, B, and C'. On the other hand, if P lies

in one of the other regions as pictured above, then we B S

can again form a triangle of smaller area. In this case
P is closer to line AB than C is (by the observations
above) so APAB has smaller area than AABC, again providing a contradiction.

A—-Part v B-Part iv: We first show that given any one of the 2n points (call it P) there
exists a line through that point and another point in the set which divides the remaining
2n — 2 points in half. The proof of this fact may be faintly reminiscent of the geometric
continuity proofs from last year. Construct a line through P and any other point (call it Q)
in the set. If this line evenly divides the other 2n — 2 points then we are done. Otherwise one
side of the line contains more than n — 1 points and the other contains less. Now rotate the
line 180° about point P. As it crosses each of the other points in turn the number of points
on either side of the line increases or decreases by exactly one, since no three of the points
are collinear. But when the line has rotated 180° back to @ the side which had greater than
n — 1 points has become the side which had less than n — 1 points! Therefore at some time
inbetween the line crossed a point R when the number of points on each side of the line was
exactly balanced. so PR is our desired line. Now construct such a line through each of the
2n points. This process will not guarantee 2n distinct lines because some of the lines will be
counted twice. However, since there are only two points on each line there will be at least n
distinet lines, which was what we wanted.

It is not difficult to obtain a line dividing the 2n points in half,

n on either side, once we have a line through two of the points, “
call them S and T, with n — 1 points on either side. Simply rotate /

the latter line a small amount clockwise about the midpoint of

segment ST, as demonstrated at right. (An amount small enough /

that our line doesn't cross over any other points, but only moves

off of S and T.) We are not done, though, because we have to

ensure that we still have n distinct divisions of our 2n points as

outlined in the problem on the A division test. For example, is it possible to obtain the
division shown at right by starting with a line through two points other than S and T and
rotating a small amount clockwise? To see that the answer is no, perform the rotation in




reverse. It is clear that by rotating the division line at right in a counterclockwise direction,
never crossing any of the points, we can only reach S and T, and no other pair of points.
Therefore each of the n lines found in the previous paragraph yields a distinct division of
our 2n points, completing the proof.

<) <= 93
Divisions A and B Round Three Team Test January 1993

A—Parts 1i,ii B—Parts i,ii: Note that in these two problems a;, az, as, and a4 are
ordinary real numbers which are determined by the four given equations. We don’t yet know
their exact values, but with a little patience one could solve the equations and determine
them (as one school did). However, using the form of the given equations and a little
ingenuity one can deduce some properties of the solutions without ever resorting to actually
solving the equations.

Using the facts section it is straightforward to verify that

ay (e 4+ 1)+ ag(r +2)* + as(r +3)° + ag(x + 4)° = (20 + 1)°.

Both polynomials are of degree three, so it suffices to find four values of x for which the
two sides are equal. When x = 0 we need a; + 8a; + 27a3 + 64a4 = 1, which is true by the
given equations. Similarly, the above equation is satisfied when x = 1, 2, and 3, using the
other three equations defining the a;. Since the cubics agree at four points they must be
identically equal.

We let this polynomial equivalence do all the work for us. The coefficient of z* on the left
hand side is clearly a, +a,+as-+ay, while the coefficient of 22 on the right hand side is 8. Since
identical polynomials have the same coefficients, it follows that a; 4+ a; + a3 + a4 = 8. The
second relationship follows from the fact that identical polynomials agree for every value of .
In particular. setting # = —5 in the above equation yields —64a; — 27a; — 8az — ag = —729.
which implies 64a; + 27a; + 8as + a4 = 729 as desired.

A—Part iii B—Part iii: As suggested we consider the polynomial

1 1
—(x—DE—=)(x——).
fl@)=@-DE-35)(@--)
If we write f(z) in the form f(x) = 2" +c12™ '+ - -+ n_12+¢, by multiplying out the factors
we can obtain explicit expressions for the coefficients. We find that ¢; = —(1 + % +...+ %),

At this point we recognize these symmetric sums from the equation in the problem.
Grouping similar powers of k& and negating both sides, we can write the equation to be
proved as

‘ .

1 1"
TSN S PP P Gl

1 2
)+ kX (n—1)-n

.= = +
1 2 n

1
1.2 1-

=—-1. (x)

[J%]

n!
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(In the B test solution substitute n for k.) Using the expressions for the ¢; allows us to write
equation (x) as
etk + ok + -+ k™ = -1

However, it is clear from the way that f was originally defined that f(3) = 0 for k = 1.
2, ..., n. In other words

f(l)=(l)n+c1(l)n_l+---+cn_1(l)+cn = 0
k k k k
= l4+ck+ - F k" 4k = 0
= ck+ -tk F ok = 1,

which was what we needed to show.

A—Parts iv,v B-Parts iv,v: The form of the inequalities suggests using AM-GM.
There is a product of quantities on the left which is less than an expression which includes
an average of those same quantities. It is given that x and r{, ro, ..., and 7, are all positive,
so AM-GM is applicable to the n numbers (x + 1), (z + 7)., ..., and (x + r,) yielding

(@+r)+@+ry)+- -+ (x+7r,)

(/(I+7"1)(f+7“2)"-(£+rn)§

n
Tyv+Tro+ -+,
#€/(1+r1)(m+r2)---(1+rn)§:I:+ ! 2n
riH+Try 4+ rp\"
:>(m+7"1)(;c+r2)---(x+rn)§(a?—{— LT ) ,
n

which was what we wanted (W °). The B test solution reads precisely the same using n = 4.

The second inequality promises to be a little trickier since the product is now on the
wrong side of the inequality sign for AM-GM to work directly. To gain some insight we
attempt to prove the claim in the case n = 4 first. Expanding both sides yields

w2t (ry ot st rg) + o >t + P (Arrarars) +

It is immediately evident that the coefficient of x* on the left hand side is larger than the
corresponding coefficient on the right hand side by AM-GM. This turns out to be true for
every power of x. For example, the coefficient of 22 on the left hand side is the sum of 7, r,.
TiT3, T1T4, ToT3, ToT4, and r374. Applying AM-GM to these six numbers yields

172 +7‘17“3 +T‘17‘4 +7’2’I“3 +T2’r‘4 -|—’f’3’r‘4
6
= 1170 + 1173 + T17q + Tor3 + 12Ty + 7374 > 6+/T1T2T37y,

v

y ("‘17”27"37"4)3

which is exactly the coefficient of z? in the expansion of (z + ¢/riT,r374)?. Hence term by
term the left hand side of the original inequality is larger than the right, so we are done.

In general, by multiplying out the left hand side we see that the coefficient of each power
of  is a sum to which we can apply AM-GM. The coefficient of z”~* on the left hand side
1s just

(rimg .. Ty k) + (r17e o T 1The1) + -+ (To kg 1Tk - - Tn)-
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i)
contain 7y, because once we have designated r;, there are only n — 1 variables left from

which to choose the k — 1 remaining factors. The same reasoning applies to any of the r;, so
n—1

if we multiply all (Z) of the terms together we obtain (ry7y- - - rn)(k~1). Therefore applying

AM-GM to those (’Z) terms yields

Notice that there are a total of (:) terms in the above sum, and exactly g'l of them

(riry . Tk_1mk) + (M2 Tk 1Tkg1) + o0+ Tkt 1Tn—k42 - - - Tn)

()

> (rirg. .. 1) (¥)

= (7“17“2 . ..’f‘k—lrk) + (7'17'2-'«7'k—17"k+1) +--- (Tn—k+17"n—k+2---7‘n) > (k) (7‘17‘2-~-7‘n)

= (7‘17‘2 Ce T‘k_IT'/C)-{'(’I"l’I“Q - Tk—17‘k+1)+' . '+(Tn—k+17'n—k+2 .. .T’n) Z (n B

n
k) (frirg . o)k
The verification that (Z:})/ (Z) = £ and (2) = (nfk) are straightforward using the usual
formula (’;) = k,(%k), But the right hand side of the last equation above is exactly the
coefficient of 2™ * in the expansion of (r + {/rir5...7,)". We conclude that term by term
the left hand side of the original inequality is larger than the right hand side, which proves
the inequality.
Notice that in these proofs the argument began with inequalities guaranteed by AM-GM,

which then implied the inequality sought after. A proof which begins with the statement to
be proved and then works towards AM-GM is not necessarily correct!

«:{3 <> 92
Divisions A and B Round Four Team Test March 1993

A—Parts i,ii B—Parts i,ii,iii: In several of the upcoming proofs we will develop intu-
itively obvious theorems from first principles, using only the distance preserving property of
rotations and a few other elementary facts. We begin with a lemma.

LEMMA: If a rotation maps points A to A" and B to B’ (as in the diagram) then it maps
the segment AB to segment A’B’.

PROOF: A fundamental fact from geometry states that a point C' ':‘_9—!.3

is on segment AB if and only if AC + CB = AB. Let C' be the |
image of C' in the above rotation. Since distances are preserved E
under rotation we know that AC'= A’C" and so on. Consequently ¢
A'C'+C'B' = A'B’ if and only if AC+CB = AB, or C"ison A’B’ ©
if and only if C is on AB. Therefore all the points of AB rotate onto all of A’B'.
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The rest of the argument now flows smoothly. Label ZBAC = «. It is clear that a
rotation about point A through angle « in the clockwise sense maps point A to itself and
takes B to C. so by the lemma it takes AB to AC. Also, if O is the circumcenter of AABC

then OA = OB = OC. Since AB = AC we find by SSS that

B ANAOB is congruent to ACOA; in particular ZBOA = £AOC.

Hence a rotation about O through this angle carries B to A and

‘4 A to C, and consequently carries BA to AC. It will be useful to

¢ compute this angle in terms of a. Since ZBAO = £ZC'AO and

N mLBAO +msCAO = «a we find that both of these angles equal
a/2. Using ABAO it follows that ZBOA = 180° — «.

The rotation about O through an angle of (180° — «) takes segment BA to segment
AC. and therefore maps M to some point on AC. This point is the same distance from A
as M is from B, as rotations preserve distance. There is only one such point, and N fits
the bill, so N must be the point onto which M is rotated. We conclude that OM = ON
and msMON = 180 — « by the definition of rotation. Finally we find that mZAMAN +
msNOM = o+ (180° — ) = 180°, so that A, M, O, and N all lie on the same circle.

A—Part iii: The strategy in most problems of this type is to find (or guess) a suitable
point of common intersection and then show that all the circles pass through it. In this
problem it is not too difficult to guess that the center of polygon A;A, ... A, is the proper
point. (A regular polygon can be inscribed in a circle and we call the center O of this circle
the center of the polygon.) Because this circumscribed circle passes through all the vertices
the point O is the circumcenter of any triangle formed by three vertices of the polygon.

At this point the reader should retrieve his/her own diagram from amongst the stack of
scratch paper generated while working on these questions. Now that polygon BB, ... B, is
neatly inscribed inside A; A, ... A, on your paper you will see that it seems reasonable for

A ~——

ANB1A3By =2 AByA3B; = --- = AB,A|B;.
This isn’t hard to show, for we can compute
LAlB]Bn - 1800 - (ZBnBlBQ + A2B]B2) - 1800 - (B]AQB2 + ZAzBlBg) - AAQBQBL

Similarly A, B, B1 = £A3B1 B3, so by ASA the two triangles are congruent, hence A;B; =
AyB,y. We can now apply our previous result to isosceles triangle A;A;As with points B
and B, on the sides to conclude that the circle through AB; A, B; passes through O. By the
same reasoning all the other circles pass through O as well, and we are done.

A—Part iv B—Part iv: Suppose that point O is actually
on line [. Then line ', the image of line [ under a rotation about
O through angle «, must intersect [ at point O. It is then clear D =
that the angle between [ and I’ is a. - o —>
We now assume that O is not on line [. Let D be the D
unique point on [ which is closest to O, which means that D is
the foot of the perpendicular from O to . When we rotate line o

| we obtain the new line [’ and corresponding point D’. Since
rotations preserve distances D' is the point on I’ closest to O, O
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which shows that OD’ is perpendicular to I’. We can now easily calculate some angles. Let
P be the point of intersection of [ and I'. Using the fact that ZDOD’ = « (the angle of
rotation) and ZODP = £0D'P = 90° it follows that ZDPD' = 180° — «, so the angle of
intersection between [ and I’ is . Note that if | and [’ were parallel then this would force
a = 180°, a case ruled out by the hypotheses of the question.

A—Part v B—Part v:Believe it or not the concluding question has one of the shortest
proofs on the test. Let ZAOA" = «, the angle of rotation. The above result indicates that
LAMA" = /AN A" = o as well, so by the facts section we conclude that both M and N lie
on the circle through O, A, and A’. Notice that this argument works perfectly well whether
O is inside, on, or outside the angle ZABC'. Two of these cases are pictured below.

Of course we run into difficulties if the two rays forming the angle are rotated so far that
they no longer intersect the original angle. However, if we rotate an intersecting pair of lines
instead of an angle then the result will hold in all cases.

<] <~ 95
Divisions A and B Round Five Team Test April 1993

A—Part i: We choose to follow the advice given in the facts section to “work backwards.”
We begin by dividing both sides of equation (3) by two, yielding equation (1). Now that we
have derived a+b+c = d+e+ f we cube this equation and subtract three times equation (4),
which yields precisely equation (2) since

(a+b+c)®=a®+b>+c+3(a? + ab® + a’c + ac? + b%c + bc? + 2abc), and
3(a+b)(b+c)(c+a) = 3(a’b+ ab® + a’*c + ac® + b*c + bc® + 2abc).

Thus equations (3) and (4) together imply equations (1) and (2).

A—Part ii B-Part i: As mentioned in the facts section, equivalent systems of equations
have the same solutions. Thus to find solutions to (1) and (2) we instead concentrate on
equations (3) and (4) since they turn out to be easier to deal with. We can further simplify
matters by substituting u =a+b,v=a+c¢, ..., 2=e+ f so that our equations become
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u+v+w=x+y+2z and wvw = zyz. (*)

Once we find integer solutions to these equations we can recover a through f by noting that
a=1@u+w-v),b=3(u+v—-w), c=1(v+w-—u), and so on. As long as the sum
u + v + w is even each expression like (u +w — v) will also be even so that the six numbers
a, b, ..., fwill in fact be integers.

It should be easy to find solutions to (x) since there are six variables and only two
equations, but the restriction that they be integers means that we still have to be careful.
To begin, we let u, v, x, and y be fixed and treat only w and z as variables. We have two
linear equations in these variables which can be easily be solved, yielding

z= (L) (x+y—u—v) and w= (Eg)z

TY — Uuv uv

We now make that observation that our life would be much easier if we choose u, v, x, and y
so that zy = 2uwv, because then the above equations would simplify to

z=x+y—u—v and w=2z,

and we no longer have to worry about fractions. It now remains to choose some values of u,
v, x, and y and see what happens. We found that choosing u =6, v =10,z = 15, andy = 8
(so that xy = 2uwv) leads to z = 7 and w = 14. Recovering a through f as indicated above
yieldsa =5, b=1,c=9,and d =7, e = 8, f = 0. Sure enough, these two sets of three
numbers have the same sum (15) and the same sum of cubes (855) so they are a solution to
equations (1) and (2).

There are a surprising number of solutions to the original equations (1) and (2), some of
them clever, some of them quite nonobvious, and all within your reach now. For example,
a=1,b=1,c=1 and d =4, e =4, f = —5is a well-known solution. Try your hand at
discovering a few more.

B—-Part ii: This is a short exercise in algebra which will help with the next part. We
let our four consecutive squares be (x + 1)?, (x + 2)?, (x + 3)?, and (z + 4)2. Performing the
indicated operations we find

(z+1)*+(x+4)>—(x+2° - (x+3)? = (@*+2r+1)+ (2> + 8z +16) —
— (2?44 +4) - (22 +62+9)
= 4

Y

which is a constant independent of which four consecutive squares we chose.

A—-Part iii, B—Part iii: The previous part motivates the following idea. Label our
consecutive integers x + 1 through x + 8. Split the first four integers into two sets of two
as described above, and then do the same with the second four integers, yielding the sets
{x+1,z+4}, {r+2,2+3} and {x+ 5,2+ 8}, {x+ 6,2+ 7}. In each case the sum of the
squares in one set is four greater than the sum of the squares in the other set. Thus pair the
larger group from the first four integers with the smaller group from the second four integers!
This pairing produces the two sets {x + 1,z + 4,2 +6,2+ 7} and {x+ 2,2+ 3,2+ 5,2 + 8}
and ensures that both the plain sum and the sum of squares within each set will be equal. Of
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course, one could also perform the necessary algebra to verify that this manner of splitting
x + 1 through x + 8 does the job. (Try it.)

A-Part iv, B-Part iv: Our intuition says that the obvious candidate for a method of
splitting up the eight integers is to try our answer from the previous part. This does indeed
work, as is immediately verified by checking that

(@+2° + (@ +3° + (@ +5)°+ (@+8)° — (z+1)° ~ (x +4)° ~ (2 +6)° — (x +7)° = 48,

which is independent of z. (We omitted a little algebra.) However, it is important to
understand why this works. Expand each of the above cubes according to the formula
(x+a)® = 2%+ 3ax? + 3a®z + a®. Clearly the 23 terms cancel. The coefficient of the 2% term
is3(2+3+5+8—1—4—6—7) which equals zero by construction — we showed in the
previous part that the sets of numbers {2,3,5,8} and {1,4,6,7} have the same sum. We
also showed that they have the same sum of squares, so the coefficient of the x term, which
is 3(2%2 + 32 + 52 4+ 82 — 12 — 42 — 6% — 7?) must also equal zero. This leaves us with only a
constant term, as desired.

A—Part v, B-Part v: We have all the ingredients necessary to prove the main theorem
at this point; we just apply the above ideas repeatedly by using an induction. The base case
k = 1 is trivial and we did the case k = 2 above. Now assume that we have found a way
to divide any 2* consecutive integers into two sets so that the sums of their first powers,
squares, all the way up to their (k — 1)* powers are equal. This is the induction hypothesis.
The sums of their k** powers won’t be equal; but, just as above, the difference between these
two sums of k*" powers will be a constant, since the coefficients of z, 2%, ..., and z* will all
vanish by the induction hypothesis, just as they did in part iv.

Now suppose we are given any 25! consecutive integers. Consider the first 2% integers
and the second 2* integers separately. By the induction hypothesis we can split each group
of 2% integers into two sets so that the sums of the first through (k — 1)** powers are equal.
Also, by the above argument the sums of k*" powers differ by a constant. Thus pair the set
with the smaller sum of k' powers from the first 2* integers with the set with the larger sum
of k'™ powers from the second 2* integers, and then pair the remaining two sets together.
We have now divided all 28+! integers into two sets so that not only are the sums of the first
through (k — 1) powers equal, but also the sum of the k*" powers, just as in part iii. This
completes the induction step, and we're done.
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Mandelbrot Morsels

An Introduction To Construction

1993-94

The elementary theorems concerning congruent triangles or arcs of circles create a neat
logical foundation for plane geometry and lead to such beautiful results as Ptolemy’s theorem
or the nine point circle. However, it is also satisfying to be able to use them in a more
concrete manner. Therefore we will turn out attention to the realm of “applied geometry,”
or constructions. By construction we mean any operation involving only a straightedge and
compass. Here are the rules for their use. A straightedge may be used to create a line,
segment, or ray on two points, and may also be used to create an arbitrary line passing
through one point. A compass may be opened to a width equal to the distance between a
given pair of points in the diagram and then placed with its center at any point in the plane
to create a circle with the chosen center and radius. One is also allowed to designate an
arbitrary point on any geometric object such as a line, circle, ray, segment, and so on.

The typical construction problem invariably follows this
pattern: given a collection of geometric objects in the plane
construct another geometric object which has a specific prop-
erty. Here is a typical construction problem, “Given a line [
and a point P not on this line construct a line passing through
point P which is perpendicular to [.” Here is the solution to
this construction problem; perhaps you already know how it
goes. Choose an arbitrary point @ on line [. Draw the circle
with center P and radius PQ); this circle intersects { in a sec-
ond point besides @, call it R. Keeping the compass open to the same radius PQ draw two
more circles centered at ) and R. These two circles intersect at two points; one of them is

P; label the other point S. Then line PS’is the desired line.

Naturally you. the discerning reader, are not convinced
by this fancy manipulation of straightedge and compass.
“I don’t buy it,” you say. Indeed, the description of the
construction ‘i only half of the solution. Therefore I shall
prove that PS is the desired line. By construction we
have PQ = PR = QS = RS, as they are all congruent
radii. Therefore we may deduce that APQS = APRS by
the side-side-side criteria for congruent triangles, and hence
ZQPS = /RPS. Let the intersection of lines PS and 1
be M. By the side-angle-side criteria for congruent triangles
we conclude that AQPM = ARPM, thus /PMQ = ZPMR. But these two angles sum
to 180°, so each must be a right angle. This argument shows that line PS’is perpendicular
to line [, as we claimed.

There are a few characteristics of the above style of proof that are worth highlighting.
First, the solution consisted of two parts: a description of the construction and a proof of
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its validity. Each part will be worth half credit on a team test. In addition, all geometric
objects were labeled and a diagram was included. This makes the proof easy to follow and
unambiguous. Finally, note that only one solution was presente(d._?his does not mean there
could not be more of them! In this example it turns out that PM is the only possible line
that passes through P and is perpendicular to /. Can you see why?

There are a host of other simple constructions like the above example which one frequently
wishes to use as steps in a more complicated construction. Here are the most commonly
used ones: creating a line through a given point that is parallel or perpendicular to another
given line, bisecting a segment or an angle, copying a segment or an angle, and constructing
an equilateral triangle (or 60° angle). It would be highly educational (hint, hint) to pull out
pencil and paper or a geometry textbook in order to figure out how one might accomplish a
few of the above constructions if they are unfamiliar.

c On to a more interesting problem. Given AABC with

S R ZC obtuse, construct an inscribed square — that is, find

points P, @, R, and S such that P and @ lie on AB, R lies

5 L on BC, S lies on AC, and PQRS is a square, as shown in
A P Q B the diagram to the left.

To solve this problem we employ the clever method of O\C

relazing a constraint. In our problem this means that for
the time being we won’t worry about requiring point R —I/
to lie on segment BC'. This has the advantage of making

the problem much simpler. We can construct a square
satisfying the rest of the conditions by choosing any point on AC, dropping a perpendicular
segment to AB, and then building a square with this segment as its left hand side. Imagine
all the possible squares that can be constructed in this manner, ranging from tiny squares
near vertex A to large ones that extend outside AABC. For one of these squares the upper
right hand vertex will lie on BC' — that is the square we are interested in. To figure out how
to obtain that one. consider the collection of all points which are upper right hand corners
of a partially inscribed square. It is a ray with one endpoint at A, as shown in the diagram.
Finding the “correct square” is now straightforward; just choose the point where this ray
intersects BC and use that point as the upper right vertex.

A B

This idea yields the following construction. Choose
an arbitrary point S’ on AC, drop a perpendicular to
P’ on AB, and construct th(ﬂuare P'Q'R'S’ with left
hand side P’S’. Draw ray AR’ and let R be the point

A P Q P Q B where this ray intersects BC'. Now drop a perpendicular
from R to Q on AB and also construct a parallel to AB
through R which intersects BC at S. Finally let P be the foot of the perpendicular from S
to AB. Essentially we just inscribed rectangle PQRS inside triangle ABC. If we can show
that this rectangle is a square then we would be done. However, this is not difficult to prove;
essentially one uses all the similar triangles in the diagram (such as AAP'S" ~ AAPS)
to show that figures P'Q'R'S" and PQRS are similar. Since P'Q'R'S’ is a square (by
construction), then PQ RS must be one also. And you’re done!




Mandelbrot Competition

Division A Round One Team Test

November 1993

Definitions: An elementary concept in probability is that of expected value. Suppose that
some experiment can yield k possible values, each of them equally likely. Call these possible
values a1, az, . . . ,ax. We define the expected value to be (a;+az+---+ax)/k. For instance,
if the experiment were rolling a die then the possible outcomes are 1, 2, 3, 4, 5, or 6. Each
possibility occurs with equal probability so the expected roll is (1+2+3+4+5+6)/6 = 33.

N

Setup: Richard owns n cars. The first has a top speed of 10 mph, the next travels at up to
20 mph, and so on up to the n*", which can move as fast as 10n mph. The cars are initially
lined up in a random order on a one lane road. When they begin to move clumps will form
as faster cars are held up by slower cars in front of them. More precisely, a block of m cars
in a row form a cluster if the lead car in that block is the slowest of the m cars, if the lead
car is faster than the car immediately behind the cluster, and if the lead car is slower than
all the cars in front of it. For example, if the cars are lined up so their speeds are

30 10|70 20|40|60 50 —

in that order and they start traveling to the right then four clusters will form as indicated
by the vertical divisions.

In general there are n! ways to order the n cars; each arrangement occurs with equal
probability and in each arrangement a certain number of clusters form. Let C,, be the sum of
these numbers, so that C,, is the total number of clusters which form in all n! orderings. The
goal of this team test will be to show that the expected number of clustersis 1+ 2 +---+ 1.

J
<

Yo

Problems:
Part i: Compute the expected number of clusters to form for n = 1, 2, and 3. Compare
these values to those predicted by the formula given above.

Part ii: Show that
Cry1 = (n+1)C, +nl.

Hint: Think of the (n + 1)! orderings of n + 1 cars as orderings of the first n cars with the
fastest car (the one moving at 10(n + 1) mph) inserted at different positions.

Part iii: Show that if we define A, = n! (1 + % 4+ 4 %) for n > 1 then the A, satisfy the
recursion A, = (n+ 1)A, +nl.

Part iv: Finish the proof by showing that the expected number of clusters to form with n
carsis 1+ + - + .

Part v: Bonus question. Now that you have completed the above proof, compute the
expected size of a cluster picked at random from among all the clusters that form in all
the n! orderings of n cars.

%
<
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Mandelbrot Competition

Division B Round One Team Test

Definitions: An elementary concept in probability is that of expected value. Suppose that
some experiment can yield k possible values, each of them equally likely. Call these possible
values a1, as, . .., ax. We define the expected value to be (a1 +az+- - - +ax)/k. For instance,
if the experiment were rolling a die then the possible outcomes are 1, 2, 3, 4, 5, or 6. Each
possibility occurs with equal probability so the expected roll is (1+2+3+4+546)/6 = 3%.

N

/
)

Setup: Richard owns n cars. The first has a top speed of 10 mph, the next travels at up to

20 mph, and so on up to the n*® which can move as fast as 10n mph. The cars are initially

lined up in a random order on a one lane road. When they begin to move clumps will form

as faster cars are held up by slower cars in front of them. More precisely, a block of m cars

in a row form a cluster if the lead car in that block is the slowest of the m cars, if the lead

car is faster than the car immediately behind the cluster, and if the lead car is slower than

all the cars in front of it. For example, if the cars are lined up so their speeds are

30 10|70 20|40|60 50 —

in that order and they start traveling to the right then four clusters will form as shown.

In general there are n! ways to order the n cars; each arrangement occurs with equal
probability and in each arrangement a certain number of clusters form. Let C,, be the sum of
these numbers, so that C, is the total number of clusters which form in all n! orderings. The
goal of this team test will be to show that the expected number of clusters is 145 +---+ 1.

Y

J
I
Problems:

Part i: Show that C; =1, Cy, = 3, and C; = 11. Use these figures to calculate the
expected number of clusters that form for n =1, 2, and 3.

Part ii: Suppose that a particular ordering for n cars is given which forms k clusters.
Show that if a car faster than all of the first n cars is added at any spot in the line, then
the new arrangement also forms k clusters unless the new car is put at the front of the
line, in which case k + 1 clusters are formed.

Part iii: Using the idea from the previous step show that

Cor1=(n+1)C, + nl.

Part iv: Show that if we define A, =n!(1+3+---+ 1) for n > 1 then the A, satisfy the
recursion A, 1 = (n+ 1)A, +n!.

Part v: Show that A, = C, for n =1, 2, and 3. Argue that A, = C, for all n > 1. Now
finish the proof by showing that 1 + % + .-+ 2 is the expected number of clusters.
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NMlandelbrot Competition

Division A Round Two Team Test

\

Facts: Ceva’s theorem is a powerful tool for proving concur-
rency of lines in a triangle. It states that if X, Y, and Z are
points on segments BC, AC, and AB of AABC then AX,
BY, and C'Z are concurrent if and only if

(42)(BX)(CY)

B L C (AY)(BZ)(CX) a 7"
One of the most useful theorems of plane geometry is the Power of R S

a Point theorem, which says that (PQ)(PR) = (PS)(PT), where the

points are situated as shown to the right. The theorem also holds if P is T

inside the circle; in this case P is a point on the intersecting chords QR and ST.

N
/

Al

Setup: Given a triangle AABC let M be the foot of the A
angle bisector from vertex A to side BC. Construct the
circle with AM as diameter; this circle intersects lines

AB and AC in exactly one other point besides A, call
these points R and @ respectively. Similarly this cir- R
cle usually intersects line BC' in one other point besides B c
point M, call this point P. If line BC happens to be P M

tangent to the circle at M we shall say that point P is the same as point M. The goal of
this test will be to prove that AP, BQ, and CR are concurrent for any triangle AABC.

%
<

Y

Problems:

Part i: You will need to consider three cases. First prove that if £B is a right angle

then AP, BQ, and CR are concurrent at point B. Next show that if 2B is obtuse then

points P and R are located outside the triangle. (Similar considerations apply to £C.)

Finally, show that if both ZB and ZC' are acute then points P, @}, and R do lie on the

sides of the triangle, as shown in the setup diagram above.

Part ii: Show that AQ = AR in all cases.

Part iii: We will attack the case where both £B and ZC are acute. Prove that
(AB)(CM) _ (BP)(CQ)

(BM)(CA) (BR)(CP)
Part iv: Complete the acute case by proving that AP, BQ, and C'R are concurrent.

prove the assertion in the case where either £B or ZC' is obtuse.
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Mandelbrot Competition

Division B Round Two Team Test

\

Facts: Ceva’s theorem is a powerful tool for proving concur-
rency of lines in a triangle. It states that if X, Y, and Z are
points on segments BC, AC, and AB of AABC then AX,
BY | and CZ are concurrent if and only if

(AZ)(BX)(CY) _

B . c (AY)(BZ)(CX) Q7"

One of the most useful theorems of plane geometry is the Power of R S
a Point theorem, which says that (PQ)(PR) = (PS)(PT), where the
points are situated as shown to the right. The theorem also holds if P is T
inside the circle; in this case P is a point on the intersecting chords QR and ST.

N
>

N

Setup: Given an acute triangle AABC let M be the A
foot of the angle bisector from vertex A to side BC.
Construct the circle with AM as diameter; this circle
intersects lines AB and AC' in exactly one other point
hesides A, call these points R and @ respectively. Sim- R
ilarly this circle usually intersects line BC' in one other B c
point besides point M, call this point P. If line BC P M

happens to be tangent to the circle at M we shall say that point P is the same as point M.
The goal of this test will be to prove that AP, BQ, and C'R are concurrent.

9%
\

'

Problems:

Part i: Show that AQ = AR.

Part ii: Establish the following lemma. If AABC is an acute triangle then the foot of the
altitude from A to line BC' lies between points B and C.

Part iii: Use the lemma from part ii to prove that points P, @, and R actually lie on the
sides of the triangle as shown above, since AABC' is an acute triangle.

Part iv: Use the Power of a Point theorem to show that

(AB)(CM) _ (BP)(CQ)

(BM)(CA) (BR)(CP)

Part v: Now combine parts i and iv, the Angle Bisector theorem, and Ceva’s theorem to
prove that AP, BQ, and CR are concurrent.
o /
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Mandelbrot Competition

Division A Round Three Team Test

g Definitions: We say that a function f(x,y) of two variables is symmetric if f(x,y) = f(y,r) w
for all possible z and y. If one is given an explicit formula for f(x,y), then it is sufficient
to check that replacing y by x and x by y does not change the value of the formula.
For example, consider p(x,y) = 2% + 3xy + y? and q(z,y) = sin(zx — y). We find that
p(y,x) = y? + 3yx + 22 = p(x,y), so p(x,y) is symmetric. However q(y,z) = sin(y — z) =
—sin(z — y) # q(x,y); hence q(x,y) is not symmetric.
This concept can be easily extended to a function of n variables. We say f(xy,...,z,) is
symmetric in n variables if interchanging any two of the variables does not affect the value
of the function.
- %
4 N
Setup: We create three sequences of polynomials as follows. Define
fl(ill,y)ZfIT, gl(x7y)=ya and hl(x,y)=f1(x,y)+gl(x,y)=a:+y.
Now define the rest of each sequence recursively by setting
fr1(@,9) = [o(@,y) - hn(2,9),  gn1(z,y) = gn(2,y) - fu(y, @), and
b1 (2,Y) = frr1(2,Y) + gniar (2, Y)-
Notice that the second factor in the definition of g,.1(x,y) is fu(y,x), not f.(x,y)! The
goal of this team test will be to prove that h,(x,y) is symmetric for all positive integers n.
J
4 N
Problems:
Part i: Let p(x,y) be a function whose domain and range are the real numbers. Prove or
find a counterexample to the following assertion: “If [p(x,)]? is a symmetric function.
then p(x,y) is also a symmetric function.”
Part ii: Suppose that x + y + 2z = 7. Prove that in this case the function
__ sinzcosz
0(5.92) = ey e
is symmetric in the variables z, y, and z whenever it is defined.
Part iii: Compute f,, g,, and h,, for n =1, 2, and 3. Verify that in each case h,, is
symmetric.
Part iv: Show that h,(x,y) is symmetric if
fa(2,y) — [y, @) = gn(y,T) — gn(z,y). (*)
Part v: Prove (x) by induction, thus completing the proof that h, is symmetric for all
positive integers n.
J
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NMlandelbrot Competition

Division B Round Three Team Test

Definitions: We say that a function f(z,y) of two variables is symmetricif f(z,y) = f(y, z)
for all possible  and y. If one is given an explicit formula for f(z,y), then it is sufficient
to check that replacing y by x and x by y does not change the value of the formula.
For example, consider p(z,y) = x? + 3zy + y? and q(z,y) = sin(z — y). We find that

ply,x) = y? + 3yz + 2% = p(x,y), so p(z,y) is symmetric. However q(y,x) = sin(y — z) =
—sin(x — y) # q(x,y); hence q(x,y) is not symmetric.

N
>

AN

Setup: We create three sequences of polynomials as follows. Define

hzy) ==z, glz,y)=y, and hi(z,y) = filz,y) + g1(z,y) =z +y.
Now define the rest of each sequence recursively by setting

frr1(2,y) = fu(2,y) - Ba(2,9), g1 (T,9) = gn(x,y) - fuly,x), and
hn+1(x»y) = fn+l(xvy) + gn+1(17,y)~

Notice that the second factor in the definition of gn41(z,y) is fn(y,x), not fu(z,y)! The
goal of this team test will be to prove that h,(x,y) is symmetric for all positive integers n.

\ %
4 )
Problems:

Part i: Let p(x,y) be a function whose domain and range are the real numbers. Prove or
find a counterexample to the following assertion: “If [p(x,y)]? is a symmetric function,
then p(x,y) is also a symmetric function.”

Part ii: Compute f,, gn, and h, for n = 1, 2, and 3. Verify that in each case h,, is
symmetric.

Part iii: Write down the equation which “says” that h,(x,y) is symmetric. Use the

definition of h,, above to show that h,(x,y) is symmetric if

fn(@,y) = fa(y, 2) = gn(y, 7) — gn(2,y). (*)
Part iv: Check that () is true for n = 1 and 2. Also, rewrite the recursive definitions for
frns1 and g,41 solely in terms of f,, and g,, i.e. eliminate h,, from the recursions.

Part v: Using your preparations in part iv prove (x) by induction, thus completing the

proof that h,, is symmetric for all positive integers n.

-T2
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- Mandelbrot Competition

Division A Round Four Team Test

Facts: A half-turn about a point O in the plane is a geometric transformation which rotates
every point 180° about the point O. Imagine placing a tack in the plane at the point O and
then spinning the entire plane halfway around, keeping the point O fixed. It follows that if
a point A gets mapped to the point A’ by a half-turn then O is the midpoint of AA’.

Here is a short list of basic constructions: creating a line through a given point that is
parallel or perpendicular to another given line, bisecting a segment or an angle, copying
a segment or an angle, drawing a circle given its center and radius, and constructing an
equilateral triangle. You may use any of these instructions in the description of a major
construction without detailing exactly how they are performed.

\
>

Setup: Most of the problems below involve the diagram to the right.
You are given an angle ZBAC' which can be acute, right, or obtuse. M

You are also given a point M in the interior of the angle. A

AN

\
f
Problems:

. — . _) % .
Part i: Construct a segment PQ with P on AB and QQ on AC such that M is the
midpoint of PQ. Since midpoints are involved an appropriage_})lalf turn, is very useful.
Part ii: Any line passing through point M that intersects AB and AC creates a triangle.
Prove that of all such triangles the one with the smallest area is the one you constructed
in part i. Perform the actual construction of this triangle and include it with your proof.
Part iii: There are two circles lying in the interior of ZBAC which are tangent to both
AB and AC and pass through point M. One is smaller and closer to point A than the
other. We shall call the closer one the inner circle and the further one the outer circle.
Describe how to construct the outer circle. ., L -
Part iv: Construct a segment PQ with P on AB and @ on AC such that PQ passes
through point M and AP + PM = AQ + QM. The outer circle will be a step in your
construction.

— — —

Part v: Construct a segment PQ with P on AB and @ on AC passing through M such
that AP — PM = AQ — QM. You need not perform the actual constructions for parts
iv and v, just describe the steps and prove that they yield the segment PQ with the
k desired properties.

Al
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Mandelbrot Competition

Division B Round Four Team Test

Facts: A half-turn about a point O in the plane is a geometric transformation which rotates
every point 180° about the point O. Imagine placing a tack in the plane at the point O and
then spinning the entire plane halfway around, keeping the point O fixed. It follows that if
a point A gets mapped to the point A’ by a half-turn then O is the midpoint of AA’.

Here is a short list of basic constructions: creating a line through a given point that is
parallel or perpendicular to another given line, bisecting a segment or an angle, copying
a segment or an angle, drawing a circle given its center and radius, and constructing an
equilateral triangle. You may use any of these instructions in the description of a major
construction without detailing exactly how they are performed.

\
ﬁ

A

Setup: Most of the problems below involve the diagram to the right.
You are given an angle ZBAC which can be acute, right, or obtuse.

You are also given a point M in the interior of the angle. A —

N
>

AN

Problems:

Part i leen a point M and a line AB describe how to construct the line which is the
image of AB under a half turn about M.

Part ii: Construct a segment PQ with P on AB and Q@ on AC such that M i is the
midpoint of PQ. The previous problem is part of the construction. Perform the actual
construction and include it with your proof.

Part iii: There are two circles lying in the interior of ZBAC which are tangent to both
AB and AC and pass through point M. One is smaller and closer to point A than the
other. We shall call the closer one the inner circle and the further one the outer circle.
Describe how to construct the outer circle.

Part iv: Let [ be the line which is tangent to the outer circle at M. Let [ intersect AB at
P and AC at Q. Prove that AP+ PM = AQ + QM.

Part v: Describe how to construct the line [ of part iv. Using the previous parts perform
the followmg on a large sheet of blank paper: construct a segment PQ with P on AB and
Q@ on AC which passes through M such that AP + PM = AQ + QM. Use a ruler to check
how well the construction works in practice.
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Mandelbrot Competition

Division A Round Five Team Test

fFacts: One is commonly interested in choosing two objects from among a total of n different A
objects; the number of ways in which this can be done is denoted (”) and is given by the
handy formula (’;) = "("—1) For example, given the four letters A, B, C, and D, there are
exactly six ways to choose two of them, which is what the formula prechcts

We now state the Pigeonhole Principle. Simply put, it says that if one has k + 1 pigeons
stuffed in any manner into k pigeon holes then there has to be a pigeon hole with at least
two pigeons in it. This is basically common sense.

\ %

4 . N
Setup: This team test will investigate the following problem. In an BAD
m x n grid what is the largest number of 1 x 1 squares that can be
colored so that no four of the colored squares form the corners of a
rectangle with vertical and horizontal sides? The grids to the right give
examples of two 4 x 3 grids. The first one does not contain any rectangles formed by the
shaded squares, while the second one does.

\ /

4 2
Problems:

Part i: Experiment to determine the maximum number of shaded squares possible in the
3x3,4x%x4,and 5 x 5 cases. Include grids with your solutions.
Part ii: Suppose that one is given an m x n grid with some of the squares already shaded.
Let ax denote the number of squares in the k" row that are shaded. Prove that if
ai asz Am n

()« (3) = (5) > ()
then there must be a rectangle created by four of the colored squares.
We now wish to shade a total of T squares (which means T'=a; + a3 + - - - + a,,) in our
m x n grid without creating any rectangles. Since a rectangle is necessarily formed if
(021) + %:22) 4t (“;‘) > %2>, we will want to minimize the left hand side.
Part iii: Show that if we have a; > a; + 2 for some ¢ and j then replacing a; by a; — 1 and
a; by a; + 1 won’t affect T but will reduce ('121) + qg"? +- (“g‘)
Part iv: Use the idea of part iii to argue that the left hand side is minimized when
la; — a;j| = 0 or 1; in other words when the numbers ay,. .., a,, are as close together as
possible. Compute this minimum for m=n=6,T =17and form=n="7,T = 22.
Part v: Prove that the maximum number of squares that can be colored in a 6 x 6 grid
without forming rectangles is 16, and the maximum for the 7 x 7 case is 21. Include a

L diagram showing how to achieve the claimed maximum number of squares for both cases.

J

- 75 -



April 1994
Mandelbrot Competition v

Division B Round Five Team Test

Facts: One is commonly interested in choosing two objects from among a total of n different h
objects; the number of ways in which this can be done is denoted (") and is given by the
handy formula (g) = "(" ) For example, given the four letters A, B, C, and D, there are
exactly six ways to choose two of them, which is what the formula predicts.

We now state the Pigeonhole Principle. Simply put, it says that if one has k + 1 pigeons
stuffed in any manner into k pigeon holes then there has to be a pigeon hole with at least
two pigeons in it. This is basically common sense.

N %
e N
Setup: This team test will investigate the following problem. In an BAD
m x n grid what is the largest number of 1 x 1 squares that can be
colored so that no four of the colored squares form the corners of a
rectangle with vertical and horizontal sides? The grids to the right give
examples of two 4 x 3 grids. The first one does not contain any rectangles formed by the
shaded squares, while the second one does.
N J W
4 I
Problems:

Part i: Experiment to determine the maximum number of shaded squares possible in the
3 x 3,4 x4, and 5 x 5 cases. No proofs necessary, just include grids with your solutions.
Part ii: Suppose we are given a 7 x 7 grid with some of the squares shaded. Let ax denote
the number of colored squares in the k* row for k = 1,2,...,7. Show that there are (”21)
pairs of columns in which both columns contain a shaded block from the first row.

Part iii: Continue this reasoning to show that there are (“21) + (a;) +---+ (“;) instances
altogether where a pair of columns intersects some row at shaded blocks. However there

are 7 columns, and hence exactly (;) pairs of columns. Use the Pigeonhole Principle to

prove that if (“21) + (‘122) 44 (‘127) > (g), then there must exist four shaded squares that
form a rectangle.

We now wish to shade a total of T' squares (which means T'=a; + az + - -+ + a7) in our
7 x 7 grid without creating any rectangles. Since a rectangle is necessarily formed if

(“21) + (“22) +-- 4 (“27) > (;), we will want to minimize the left hand side.

Part iv: It turns out that the left hand side is minimized when |a; — a;] = 0 or 1 for all

1 <i<j <7 Demonstrate that you understand what this condition means by
minimizing (‘121) + (‘g") +- 4 ("27 if the total number of shaded squares is 22.

Part v: We are ready to solve the problem for the 7 x 7 grid. Combine parts iii and iv to
prove that there is no way to color 22 of the squares without forming a rectangle. Now

find a way to successfully color 21 squares. And You're Done!
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Divisions A and B Round One Team Test November 1993

A—Parts i,ii B-Parts i,ii,iii: Going on the principle that doing the most elaborate
case means that we can probably do all the cases, we will compute Cj first. Labeling our
cars 10, 20, and 30 from slowest to fastest we make a table of the six possible arrangements
with the clumps that form and the number of clumps. The cars are moving to the right.

—

Orders: 10]20/30 10|30 20 20 10|30 2030 10 30 10|20 3020 10
# Clumps: 3 2 2 1 2 1

Therefore the total number of clumps is C3 =3+2+2+ 142+ 1 = 11 for the six different
orderings. To determine the expected number of clumps we divide the total number of
clumps in all the orderings by the number of orderings to find that E3 = %1 = 161 In fact
I+ % + % = % so our findings agree with the formula given in the setup section. The
cases n = 1 and 2 are even simpler. Constructing a table similar to the one above we find
that C; = 1 and C, = 3, hence the expected number of clumps are E; = 1 and E, = —g-
respectively, as predicted by the formula.

Suppose that we have n cars in some given arrangement which form k clumps. We claim
that inserting another (10(n + 1) mph) car faster than any of the original n cars results in
either k or k 4+ 1 clumps depending on whether or not the new car is added at the front of
the line. Suppose that we insert the 10(n + 1) mph car behind some other car in the line.
The fast car will be forced to join the clump containing the car in front of it. All the other
clumps remain unchanged, so there are still £ clumps in our new arrangement. However.
adjoining the fast car to the head of the line creates a one car clump since the new car is
faster than any car behind it. The other clumps remain unchanged, so we have k+ 1 clumps.

Now consider all (n + 1)! arrangements of n 4+ 1 cars. By definition there are a total
of Cp4q clumps. On the other hand these (n + 1)! arrangements can be naturally divided
up into n + 1 groups according to where the fastest (10(n 4+ 1) mph) car is located. Thus
there are n! orderings in which the fastest car is last; these arrangements are all possible
orderings of the first n cars with the fastest car inserted at the end. By definition C;, clumps
are formed by all n! arrangements of the first n cars, and by the above observation, adding
the fastest car at the end doesn’t change the number of clumps in any of these orderings.
so there are a total of C,, clumps in this first group. The same is true of any one of the n
groups of arrangements in which the fastest car is not in front. A total of C, clumps will
be formed in each of these groups of arrangements. So far we have counted nC, clumps.
Now consider the final n! arrangements in which the fastest car is in front. By the above
observation there will be a total of C, + n! clumps in this group; C,, formed by the first n
cars plus, for each of the n! orderings, one extra clump created by the fastest car. In total
we have

nCp+ (Cp+n!)=(n+1)C, +n!

clumps, therefore C,,,1 = (n + 1)C,, + n! as desired.
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A—Parts iii,iv B—Parts iv,v: There was some confusion as to what exactly had to
be shown in order to prove the statement. Here is the strategy. A sequence of numbers
{A;, Az, As, ...} has been defined according to the formula given in the problem. Our task
is to show that this sequence satisfies the recursion A, = (n + 1)A, + n! forn > 1. In
other words, we have to check that substituting the values for A,, and A,,;; into the previous
formula yields a true statement for every n > 1. There is no induction involved!

So here goes. Using the definition A, =n!(1+ 1 +---+ 2) we find that

1
n

(4 DAntnl = (b D@45+ + )+l
= (n+1)!(1+%+---+%)+(2:11)!
= (n+1)!(1+%+---+%+ni])

- An-{—l'

This proves that the sequence {A;} satisfies the recursion.

Comparing our results of the previous two problems we find that we have two sequences
of numbers {A,} and {C,,} which satisfy the same recursion. Moreover the first terms of
each sequence are the same; in part i we found that C} = 1, and A; = 1!(1) = 1 by definition.
Therefore by common sense both sequences must be the same. Technically we could employ
an induction argument. We know that A; = C}, establishing the base case. Suppose that
A, = C, for some n, then A,y1 = (n+ DA, +n! = (n+ 1)C, + n! = C,y1. Therefore
C, = A, for all n > 1, giving us the formula C, = nl(1+ 1 + - + 1). We can now use
this expression to calculate the expected number of clumps for n cars. We divide the total
number of clumps in all of the orderings, which is C,,, by the number of orderings, which is
n!. Using our formula C, = n!(1+ 3 +--- 4 1) this number is just 14+ 3 +--- + 1, W=

The whole point of this exercise was to solve the recursion that we found for C,,. This is
often how one solves a recursion — figure out the first couple values, try to find a pattern,
guess a general formula, and then show that this general formula satisfies your recursion and
has the appropriate initial values.

A—Part v: According to our prescription for finding expected value we need to add up
the sizes of all the clumps found in all n! orderings of n cars and then divide this sum by the
number of clumps. But the sum of all the clump sizes is just the total number of cars in all
n! orderings since each car is in exactly one clump, so this number is n(n!). We just found
the total number of clumps; it is C,, = n!(1 + % +o 4 %) Therefore the expected size of a
randomly selected clump is

n(n!) n(n!) B n
Cn n!(1+%+--~+ 1+%+...+

I I
n n

Several schools pointed out that this is the harmonic mean of the first n natural numbers.
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Divisions A and B Round Two Team Test December 1993

Before beginning I would like to address a common error that appeared in the proofs
submitted by a large number of schools. It went something like this, “We need to prove an
equation is true, so we will write it down here at the top, and then throw in a few facts
we've figured out, and voila, we arrive at a true equation, so we’re done.” This is known as
working backwards. It is an excellent way to approach a problem, but it is a logically faulty
proof. Once you have successfully worked backwards on your scratch paper, start your proof
with those facts and the true equation and deduce the equation to be proved from them.

Unlike most of the other team tests that you have taken, the five parts on this test
comprise one involved geometry problem. Therefore it seems proper to write up one full
proof instead of several smaller solutions. You will find that the answers to all the parts
appear at some point in the proof below.

THEOREM: Let M be the foot of the angle bisector from A to side BC in AABC.
Construct the circle with AM as diameter, and let P, @, and R be the points of intersection
— —> “—>
of this circle with BC, AC, and AB respectively other than points A or M. Then lines
AP, BQ. and CR are concurrent.

PROOF: We shall consider three cases. Either both ZB and ZC' are acute, or one of them
is a right angle, or one of them is an obtuse angle. These three cases are pictured below.

A A
A
Q Q Q
R P C
B P M C  B=P=R M C R

In all cases we will use the fact that ZARM, ZAPM, and ZAQM are right angles since
they subtend chord AM which is a diameter. We now prove a short lemma.

LEMMA: If AABC is an acute triangle then the foot of the altitude from A to BC lies
between B and C. -,

PROOF: Let H be the foot of the altitude from A to BC. Clearly neither B nor C can be
this point because then AABC would be a right triangle, not an acute triangle. Suppose
points B, C, and H occurred along the line in that order. Then ZACH would be obtuse
since ZACB is acute, so AACH would include a right angle and an obtuse angle, which is
impossible. The same problem arises if H is beyond point B to the other side, so H must
lie on BC. Note that the same argument demonstrates that if ZABC is obtuse then points
H, B, and C occur along line BC' in that order.

Now consider ABM A in the first diagram. Since ZBAM is half ZBAC which is an angle
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in AABC, «BAM must be acute. We are also given that ZM BA is acute. Since R is the
foot of the altitude from M to AB and the base angles are acute as shown above, R must
lie on segment AB. The same logic shows that Q lies on AC and that P lies on BC.

In the second case we assume without loss of generality that ZB is the right angle. Hence
m£ABM = 90° which means thag is on the circle with AM as diameter. Now by definition
R is the point other than A on AB which intersects the circle, therefore R and B are the
same point. Similarly P and B are the same point. It is now clear that in this case TP, E@:
and CR all pass through point B and thus are concurrent, so we are done in the second case.

The last case is similar to the first; we know that ZBAM is acute, ZM BA is obtuse,
and R is the foot of the altitude from M to AB. It follows that R lies on the extension
of AB, and in the same manner P lies on the extension of BC. Therefore the diagrams
above are indeed drawn correctly. (Golden rule of diagrams: never assume anything.) Some
schools showed that B must be inside, on, and outside the circle in the first, second, and
third diagrams respectively, which is another good way to figure out where P, @), and R are
positioned relative to A, B, and C'.

Now to apply some theorems. First we argue that in all cases AR = AQ. Note that
ANARM and ANAQM are both right triangles, and furthermore ZRAM = /QAM since
AM is an angle bisector. They also share side AM, so ARAM = AQAM by SAS, hence
AR = AQ.

By the Power of a Point Theorem applied to B we can conclude that (BR)(BA) =

BA

(BP)(BM), which can also be written g3 = %. Applying the theorem to point C' we

arrive at the corresponding equation % = g—g. Multiplying these equations together yields

(BA)(CM) _ (BP)(CQ)

(BM)(CA) (BR)(CP)

Notice that these equations hold in both the first and third cases, since the Power of a Point
Theorem applies whether points B and C are inside or outside the circle.

Another theorem which holds in both cases is the Angle Bisector Theorem. This theorem
tells us that if AM is an angle bisector of AABC with M on BC then % = %, which
can be rewritten as

(BA)(CM) i
(BM)(CA)
Combining this result with the previous equation we conclude that
(BP)(CQ) _
(BR)(CP) '

Finally, we incorporate the fact that AR = AQ by stating this as ﬁ—g = 1 and multiplying

the above equation by this one to obtain
(AR)BP)(CQ) _ |
(AQ)(BR)(CP)

We can now immediately conclude in the first case that AP, BQ, and CR are concurrent
by applying Ceva’s theorem as stated in the facts section of the team test. Schools that
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investigated Ceva’s theorem hopefully also discovered that Ceva’s Theorem applies even
when P, ), and R are not on the sides of AABC but on their extensions! This result is
sometimes called Extended Ceva, but it is really just another aspect of the same general
theorem. In other words, the final equation allows us to conclude that the desired lines are
concurrent in the third case as well, which completes the proof.

] - =
Divisions A and B Round Three Team Test January 1994

A—Part i B-Part i: As we shall see, the question of whether or not p(z,y) is symmetric,
given that [p(x,y)]™ is symmetric, reduces to the question of whether or not real numbers
have unique n'" roots. For example, suppose that [p(x,y)]? is symmetric, so that [p(z,y)]* =
[p(y,x))? for all pairs (z,y). Can we conclude that p(x,y) = p(y,x) by taking square roots?
In other words. if the squares of two real numbers are equal do the numbers themselves have
to be equal? The answer is clearly no; one number could be the negative of the other. Using
this idea we choose a function so that p(z,y) = —p(y,x). The function p(z,y) =z —y is a
good counterexample, as is the function p(x,y) = sin(z — y) given in the definitions section.

On the other hand, suppose that [p(z,y)]® is a symmetric function. By definition this
means that [p(x,y)]® = [p(y,x)]® for every pair of real numbers (x,y). This time we can
conclude that p(z,y) = p(y,z) by taking cube roots, since every real number has a unique
cube root. (One way to convince yourself is to consider the graph of y = 2®.) Therefore
p(x,y) is symmetric.

In contrast, let p(x,y) be a function of two complex variables whose output is a complex
number. Then we can no longer take cube roots on both sides of the equation [p(z,y)]* =
[p(y, x)]? because a complex number has three complex cube roots. For example, the complex
number w = 3(—1+ i4/3) is a cube root of one (try calculating w® by hand), as is w?® and of
course 1 itself. We can exploit the fact that there are distinct complex numbers whose cube
is 1 as follows: define p(x,y) = 1 for all complex pairs (z,y) with R(z) > 0 and p(z,y) = w
for all other pairs (x,y) where R(x) < 0. Then [p(z,y)]> = 1 for all (z,y) so [p(x,y)]? is
symmetric. But there are many instances where p(x,y) # p(y,x) such as (z,y) = (1, —1+1).

A—Part ii: The stipulation that q(x,y, 2z) is symmetric “whenever it is defined” is nec-
essary because there are bothersome examples such as x = 0, y = z = 7 for which g(z,y, 2)
is defined but g(x,z,y) is not. Given that no zeros appear in any denominators we can
calculate

sinx cos sinx cos © sinz sinysin z cosx
q(:r,y,z) ~ cosy cosz ~ cosysinz+coszsiny

cosysinz + cos zsiny

siny sin z sinysinz

Now note that cosysin z 4+ cos zsiny = sin(y + z), and using the equation x +y + 2z = 5 we
have sin(y + z) = sin(§ — x) = cosz, so we can simplify the above expression to arrive at
sin x sin y sin 2 cos x

Ty, 2) = = sinz sinysin 2.
q(z,y, 2) P Yy
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This expression is clearly symmetric in z, y, and z. Since we can always write ¢(z,y, z) in
this form if it is defined we have shown that q(z,y, z) is symmetric.

A—Part iii, B-Part ii: The following table lists the polynomials obtained by using the
recursions defined in the set-up section.

fn(z.9y) gn(z,y) hn(z,y)
n=1 T Y r+y
n=2 z? +zy y? 2% + 2y + 1

n=3 z'+ 2% + 2x%* + xy® xyP +yt 2! + 223y + 20%? + 2xy° + o*

In computing gs3(z,y) we used the recursive definition gs(z,y) = g2(z,y) f2(y, ) and noted
that fo(y,x) = y? +yx to find gs(z,y) = (¥?)(y? +yz) = zy® +y* as shown in the table. Note
that none of the functions f,(z,y) or gn(z,y) is symmetric, but their sum h,(z,y) always
is, at least for n =1, 2, and 3.

A—-Parts iv,v B—Parts iii,iv,v: Perhaps the first problem was a little easy to merit a
whole question to itself. I'm sure nobody minded too much. One checks that

falr,y) = fuly, ) = gn(y, @) — gnlz,9) (*)
=  falz,y )+gn(:r y) fn( ) + gn(y, x)

using the definition hy,(z,y) = fu(x,y) + gu(z,y). The last equation shows that h,(z,y) is
symmetric.

In order to make the proof more readable we will introduce some abbreviations. Let
us agree to write f, when we mean f,(x,y) and let us write f,, to mean f,(y,x) with
the variables reversed. We will employ similar abbreviations for g,(z,y) and h,(z,y). For
instance, with this notation the recursive formula for gn41(x,y) can be written gpi1 = gn fu.
which is much easier to deal with. )

We now prove (x) by induction. The base case says fi; — fi = §; — g1 which is true since
both sides equal  — y, using the table above. Now suppose that fn, — fn = Gn — gn. By a
previous argument this means that hy(z,y) is symmetric, in other words h, = h,,. We now
find that

fn+1 - fn+1 = fn fn (by deﬁnition)
= fn n fn n (by symmetry)
= fulfu+ gn) = fn(fn +gn) (by definition)
= Gnfn— gnfn (cancelling the common term)
= Gnt1 — Gns1- (again by definition)

This proves the induction step. Therefore f, — f, = Gn — gn for all n, and hence h,(z,y) is
symmetric for all n.
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Divisions A and B Round Four Team Test March 1994

A-Part i B-Parts i,ii: We begin by describing how to
construct the image of a given line under a ha(h‘;tl)n‘n about a
given point. Label the point M and the line AB. Since this
half-turn takes AB to some oth other line we need only ascertain
the images of two points on AB and then draw the line through
them. Call the image of A the point A’. By the facts section A’
is the unique point such that M is the midpoint of AA’. This
suggests that we draw line AM, then construct the circle with center M and radius AM.
This circle intersects AB in A and a second point which we define to be A’. By construction
M is the midpoint of AA’, so A’ is the image of A. Performing the same process on B yields
B’, and finally drawing the line through A’ and B’ yields the line which is the image of AB.

There were two popular approaches employed by students for
constructing PQ, each of which is mstructlve so we will discuss
both In the first we construct ray A'C" which is the image of
AC under a half turn about pomt M using the technique above.
It is clear that A’C’ intersects AB in a unique point which we
label P. Let ) on AC be the preimage of P (the point P “came from”) A simple way to
construct @ is to draw line PM and note where it intersects ray AC. By the definition of
half-turns M is the midpoint of PQ.

The second proof proceeds as follows. Construct A’ so that M is the midpoint of AA’.
Next construct lines through A’ that are parallel to lines AC' and AB; let these intersect AB
and AC in points P and @) respectively. By construction quadrilateral APA’Q is a parallel-
ogram, and we recall that the diagonals of a parallelogram bisect one another. Therefore M
is the midpoint of PQ since it is the midpoint of AA’.

A—Part ii: We will continue the second proof

just presented. Let [ be any line through M ] b
which forms a triangle with ABAC as in the di-
agram. Suppose | intersects AB AQ, and AC
in points D, E, and F respectlvely Notice that
[ divides the area of APA'Q in half. This is im-
mediately apparent from the fact that a half turn
about M takes each half to the other; P goes to
Q, A goes to A’, and the line [ maps to itself. Since half-turns preserve lengths they preserve
congruent triangles and therefore areas as well. We now see that

/

K(AADF) = K(ADEQ) + K(AQEF) > K(ADEQ) = %K(APA’Q) _ K(AAPQ),
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where K( ) denotes the area. A similar argument applies if [ is situated such that F is
between A and @, D is beyond P, and E is on AP

A—Part iii B—Part iii: The strategy needed to solve this problem is described in
the handout “An Introduction to Construction.” We begin by constructing an arbitrary
circle inscribed in ZBAC which doesn’t necessarily pass through M. First construct the
angle bisector of ZBAC. Then choose an arbitrary point O’ on the bisector, and drop
perpendiculars from O’ to AB and AC meeting these rays at P and ). Then AAPO' =
AAQO' by the hypotenuse-leg theorem for congruent right triangles, so O'P = 0'Q). As
a consequence the circle centered at O’ passing through P also passes through @ and is
tangent to both sides of the angle since O'P and O’Q are perpendiculars.

We now have a circle inscribed in ZBAC; we would like to construct one which passes
through point M. Draw line AM and let M’ be the point of intersection of AM with the
inscribed circle closer to A. The idea is that we now have a scaled down version of the
solution, namely an outer circle for M’. Imagine blowing the picture back up so that M’
matches up to M, then O’ would scale up to the correct center O. In order to make this
concrete it is useful to draw line O'M’ which would correspond to the parallel line OM in
the bigger picture; this gives us a method for constructing O. Draw the line through O" and
M’ and construct a parallel line through M intersecting the angle bisector at point O. The
circle with center O and radius OM is the desired circle.

A rigorous proof of this construction uses homothecy, the mathematically correct term
for “scaling up” (or down). By construction triangles AO’M' and AOM are similar, so the
ratios :AA;,, j;g,, and A]‘l’l,g, are equal. Performing a homothecy of the plane with center A and
scale factor £7% (i.e. a scaling up by the amount ﬁ‘}, about A) takes M’ to M and O’ to O
by the observation about equal ratios. Therefore it takes the circle with center O’ to a circle

with center O and radius 2 W times as large as the old one, which is exactly the dlstance

OM , again using the observation about equal ratios. The homothecy maps rays AB and
AC to themselves so the larger circle is still tangent to both sides of ZBAC. Therefore the
circle we constructed above passing through M is precisely the image of the smaller circle,
hence it is inscribed in ZBAC' as just mentioned and we have proved that our construction
works.

A—Part iv B—Parts iv,v: Most of the work has already been done in the previous
problem. Given M insige_) ZBACl):onstruct the outer circle as outlined above. Label the
points of tangency on AB and AC as F and F respectively. Draw the line tangent to the
outer circle at M. This line can be constructed relatively simply by drawing the line OM
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and then constructing the perpendicular to OM at point M. Let this line intersect the sides
of the angle at P and @ as shown. Since tangents from a point to a circle have the same
length we know that AE = AF, PE = PM, and QF = QM. Therefore we can calculate

AP + PM = AP + PE=AFE = AF = AQ + QF = AQ + QM.

This shows that PQ is the desired segment.

A—Part v: This construction parallels the previous one very closely, so we will only
outline the steps. Construct the inner circle through M, and draw the tangent to this
circle at M. Let the inner circle be tangent to LBi()] at F and F, and label the points of
intersection of the tangent line with rays AB and AC as P and Q. We claim that PQ is the
desired segment. As before we know that AF = AF, PE = PM, and QF = QM. Therefore

AP — PM = AP - PE=AE = AF = AQ — QF = AQ — QM,

proving the claim.

] - =
Divisions A and B Round Five Team Test April 1994

A—Part i B-Part i: After trying a
number of possibilities it becomes ap-
parent that the maximum number of
shaded squares that can be squeezed
onto a3 x 3,4 x4, and 5 x 5 grid are
six, nine, and twelve, respectively. An interesting
pattern (which unfortunately does not generalize) gives examples of
grids with six, nine, and twelve shaded squares. It is not too difficult to argue that these
are indeed the maximums using just the Pigeonhole Principle and some casework. However,
this approach becomes tedious even for small grids. It is also possible to use the method
outlined in the next four parts which is much more efficient. The reader is invited to use
this method to verify the maximums stated above.

.....

a shaded block from the first row. We deduce this from the fact that there are a; shaded
squares in the first row, and hence exactly (“21) ways to designate a pair of these squares.
Finally, each pair of shaded squares determines a pair of columns.

We will demonstrate the 7 x 7 initially, the general case is no harder. Using the same

23

reasoning as above we find that there are 2) instances in which a pair of columns intersects

the k*! row at shaded blocks. Hence there are (“21) + ("‘27) +- -+ (“27 ) such instances altogether.

Now suppose that
ay n a9 Lo az S 7
2 2 2 2)



86

The left hand side counts the total number of times some pair of columns intersects some
row at shaded squares. The right hand side represents the total number of pairs of columns.
By the Pigeonhole Principle some pair of columns must have been counted twice in the sum
on the left. In other words, some pair of columns intersects two different rows at shaded
squares, which will create a rectangle.

In general we have m rows with a, shaded squares in the k*" row. There are n columns
and therefore (’;) pairs of columns. Suppose that

(3)+ (3 e (5)- )

As before we conclude by the Pigeonhole Principle that some pair of columns has been
counted twice in the sum on the left, which creates a rectangle.
Notice that the converse of this statement is false! We cannot conclude from

(3)+ (5) -+ (%)= C)

that no rectangles are formed! For example consider n = 5, m = 2, a; = 4, and a, = 3.
Then one can easily verify that these numbers satisfy the inequality above. One can also
check that in a 2 x 5 grid with four shaded squares in the first row and three in the second
that a rectangle is necessarily formed, so the converse is false.

Parts iii,iv B—Part iv: This part is a brief exercise in algebra. The following observa-
tion will simplify our calculations:

k k—1\  k(k-1) (k:—l)(k—Q)_(k—l)[k—(k—Z)]_k 1
() (7)o e tpn

2 2 2

Now suppose that a; > a; + 2 for some 7 and j. Clearly replacing a; by a; — 1 and a; by
a; + 1 will not affect the sum a; + --- + an. To show that the sum 3 (%) is decreased it
suffices to only compare the terms involving a; and a; since the others are unaffected by the
replacements. We find that

+ a; > a1—1 + a;+1
= 26 T )
= a;, —1 > a;

— a; Z a; + 27

using our above calculation in the third line and the fact that all our variables are integers
to obtain the fourth line. The final equation is true by hypothesis and all our steps are
reversible so the initial statement is verified.

The problem dictates that the total number of shaded squares and the size of the grid
remain constant. Under these constraints we will show that a necessary and sufficient con-
dition for the quantity (“21) + (“22) +- 4 (“;") to be minimized is that |a; — a;| < 1 for all
1 < 4,5 < m. The previous problem shows why this condition is necessary; if |a; — a;| > 2
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for two numbers a; and a; then an appropriate replacement would yield a new sequence of
m integers with the same sum for which the quantity (a;) + (”'22) +e (a';") is smaller, so
the original sequence could not have achieved the minimum.

On the other hand there are only a finite number of possibilities for the non-negative
integers ag, ..., an. Therefore the minimum must be attained by one of these possibilities.
There is a subtle point to realize; it is conceivable that several different sequences all satisfy
the condition |a; — aj| < 1, but only one of them achieves the minimum. (Think about
this.) We leave it as an exercise to the reader to show that there is in fact only one possible
sequence (ignoring permutations) satisfying the condition whose sum is the given total T
Therefore the stated condition is also sufficient; in other words if a sequence with sum T°
satisfies |a; — a;| <1 then it achieves the minimum.

For m = n = 6 and T = 17 we find the sequence (2,3,3,3,3,3) with appropriate sum
satisfying our condition. Hence @) + 5(3) = 16 is the corresponding minimum. Similarly
when m = n = 7 and T' = 22 we have the unique sequence (3, 3,3, 3,3, 3,4) of seven numbers
with correct sum which satisfies |a; — a;| < 1. Therefore 6@) + ;) = 24 is the minimum.

A—Part v B—Part v: We first show that a rectangle is always formed if 22 squares are
shaded in a 7 x 7 grid. Applying the inequality just obtained we know that

(3) e (3) 2 G) o)==

But (2:721), which forces a rectangle to be formed. In the same manner we conclude that a

rectangle will necessarily be created by shading 17 squares of a 6 x 6 grid, since

(9)-) ) () non ()

However, as pointed out the first in-
equality gives a sufficient but not nec-
essary criteria for a rectangle to ex-
ist. So we must produce examples of
grids with T = 16 and T = 21 to
conclude that these totals can be at-
tained. Two symmetric solutions are
exhibited here; note that our 6 x 6
grid was created by taking the lower
right block of the 7 x 7 grid. In gen-
eral, a subgrid of a colored grid with no rectangles will also have no rectangles.

I think there are several possible paths of inquiry from here. Using Cauchy I have found
a general bound of T < Ln(@)] for an n x n square. Does this expression always yield
the best possible upper bound? (It does for 1 < n < 7.) There is also the question of three
dimensional grids or higher. Perhaps the reader can find other interesting results along these
lines. Happy hunting.
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Mandelbrot Morsels

A Platonic Relationship

1994-95

Solid geometry is the three dimensional analogue of Euclidean geometry. Therefore the solid
geometer works not only with lines, circles, and polygons but also with planes, spheres, and
polyhedra. In this essay we will focus on the combinatorial aspects of solid geometry, most
notably by counting vertices, edges, and faces of polyhedra. Our goal will be to enumerate
all the Platonic solids using only Euler’s formula, which relates the number of vertices, edges,
and faces of a polyhedron. But let’s start at the beginning.

Euler’s formula concerns polyhedra so we will take a moment
to define them to everyone’s satisfaction. The simplest polyhe-
dron is a tetrahedron, which has four vertices which are noncopla-
nar (that is, not all lving in the same plane), six edges, and four

triangular faces. The faces, joined along the vertices and edges, divide space into two com-
ponents: the interior and exterior of the tetrahedron. Pictured above are two exemplary
tetrahedra. Their interiors do not overlap while their exteriors do.

We can “glue” two tetrahedra together along congruent faces to obtain a slightly more
sophisticated polyhedron. By successively gluing more tetrahedra to the growing conglomer-
ation, always along congruent faces and in such a manner that the interiors of our tetrahedra

RN

don't overlap, we can build up any polyhedron whatsoever. For example, the cube above
can be built from five tetrahedra. We define a polyhedron to be any solid constructed in this
manner as long as it is “contractible.” In other words the polyhedron must loosely resemble
a sphere; no polyhedra with holes (like a donut) or hidden cavities (like a soccer ball).

Before introducing Euler’s formula we pause to explain some concepts involving convexity.
If a polyhedron has the property that, given any two points in its interior, the segment joining
them also lies in the interior, then we say the polyhedron is convezr. A convex polyhedron
doesn’t have any exterior space “jutting into it” like the polyhedron to the left.
Now suppose we are given a finite set of points in space. Imagine a large balloon
surrounding all the points which is allowed to deflate as much as possible. The
balloon will stretch taut about exactly those points in the conver hull. We call the resulting
polyhedron the outer polyhedron. As an example consider four noncoplanar points which are
the vertices of a tetrahedron. Let us place a fifth point on one face of the tetrahedron and
a sixth point in the interior of the tetrahedron. Then the first five points are on the convex
hull, while the sixth is not. The tetrahedron is the outer polyhedron. In general given n > 4
points in space it is possible for any number between 4 and n of them to be on the convex
hull.

\__.___
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Here is Euler’s formula:
v+ f=e+2,

where v, e, and f refer to the number of vertices, edges, and faces of the polyhedron. Euler’s
formula applies to any polyhedron at all, not just convex polyhedra. An informal proof
turns out to be relatively simple. Take a moment to check that the formula holds for a
tetrahedron. Since any polyhedron can be built from tetrahedra we just have to check that
the formula remains valid after we attach an additional tetrahedron. Exercising spatial
prowess the reader should be able to verify that in general attaching a tetrahedron yields
two new faces, three new edges, and one new vertex. The equation remains balanced so the
claim is “proved” by induction on the number of tetrahedra used in the construction of our
polyhedron. There are a few special cases to worry about. For example, if one of the faces
of the new tetrahedron lines up perfectly with the adjoining face of the polyhedron when it
is attached then these two faces merge into one face on the resulting polyhedron, so only
one new face is created overall. However, the edge between these faces disappears, so only
two new edges are created. As before one new vertex is created, so the contributions from
the tetrahedron still balance.

A straightforward and entertaining application of Euler’s formula is to determine all the
regular polyhedra, also known as Platonic solids. We require that a regular polyhedron have
faces which are congruent regular polygons, and also that the faces be arranged about each
vertex in an identical manner. In particular each vertex must be an endpoint of the same
number of edges. So let m be the number of edges meeting at each vertex. Since there are
v vertices and each edge is joined to two vertices we must have 2e = mwv. Also let n be the
number of edges on each face. Since each edge is part of exactly two faces we find as before
that 2¢ = nf. (Verify these two formulas!) Note that m > 3 and n > 3. Solving for v and
f and substituting the resulting expressions into Euler’s formula yields

2e  2e

e+2=—+
m n

Clearing fractions, rearranging, and adding 4e to both sides we arrive at

emn — 2em — 2en +4e = 4e — 2mn.
—=e(m—2)(n—2) = 4e —2mn < 4e.

Therefore (m—2)(n—2) must be either 1, 2, or 3. Since m and n are positive integers greater
than or equal to 3 there are only five possibilities, which are tabulated in the following chart.

Polyhedron |m |n| e| v | f
Tetrahedron 313 6| 4| 4
Cube 31412 8| 6
Octahedron 41312 6| 8
Dodecahedron | 3| 5|30 |20 | 12
Icosahedron 513130]12]20

The algebra indicates that the five solutions we have found are the only possibilities. In fact
there does exist one regular polyhedron for each solution, so we have found the five Platonic
solids. Build colorful models of them and take them to parties.



November 1994

Mandelbrot Competition

Division A Round One Team Test

Facts: We state the basic theorem on cyclic quadrilaterals. If Y and Y’ Y w
are on the same side of line X Z then X, Y, Y’ and Z lie on a single circle
if and only if ZXYZ = £/XY'Z. Similarly, if Y and Y” lie on opposite
sides of line X Z then X, Y, Z, and Y” form a cyclic quadrilateral if and
only if meXYZ +msXY"Z = 180°. X A

Let APQR be a triangle all of whose angles measure less than 120°. Then there is a
point F' in the interior of APQR such that mZPFQ = mZQFR = mZRFP = 120°. This
point is known as the Fermat point of triangle PQR.

\ J
e N c )
Setup: In the diagram, triangle ABC' is an equilateral triangle. V\
Select any point R on AB and choose P and Q on BC and AC ’ P
so that AARQ and ABPR are also equilateral triangles. With Q
base QP construct equilateral triangle QPN exterior to AQPR as \
A R M B
/

shown. Finally, let M be the point on AB such that AR = MB.

Y

<

Problems:

Part i: Prove that QPM is an equilateral triangle and that M PQR is a cyclic
quadrilateral.

Part ii: Show that RM = NC and that RM is parallel to NC.

Part iii: Show that rotating the plane 60° counterclockwise about point R carries Q to A
and B to P. In the same manner show that NR can be obtained from QB by a 60°
rotation. Use these observations to prove that AP = BQ = NR.

Part iv: Show that each angle of APQR measures less than 120°. Prove that the Fermat
point F lies on the circumcircles of triangles ARQ, BPR, and QPN.

Part v: Prove that AP, BQ, and NR are concurrent at F.
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Mandelbrot Competition

Division B Round One Team Test

November 1994

Facts: We state the basic theorem on cyclic quadrilaterals. If Y and Y’ Y
are on the same side of line X Z then X, Y, Y’ and Z lie on a single circle
if and only if £XYZ = «XY'Z. Similarly, if Y and Y” lie on opposite
sides of line XZ then X, Y, Z, and Y"” form a cyclic quadrilateral if and
only if msXYZ +msXY"Z = 180°. X Y
A rotation of the plane through an angle o with center O is a transformation which maps
each point A to a point A’ such that OA=0A" and ZAOA" = a. By convention positive
angles denote counterclockwise rotation while negative angles indicate clockwise rotation.
Rotations are isometries, which means distances are preserved; if one rotates points A and
B to their images A’ and B’ then AB = A’B’. Consequently a rotation preserves lines,
segments, circles, and angles. In other words, the image of a circle is a congruent circle, and

similarly for the others.

Y

Setup: In the diagram, triangle ABC is an equilateral triangle.
Select any point R on AB and choose P and Q on BC and AC
so that AARQ and ABPR are also equilateral triangles. With
base QP construct equilateral triangle QPN exterior to AQPR as
shown. Finally, let M be the point on AB such that AR = MB.

A B

A

Y

Problems:

Part i: Show that a 60° rotation about R takes QB to AP.

Part ii: Use rotations to prove that AP = BQ = NR.

Part iii: Prove that PM = QM.

Part iv: Show also that QM = QP, demonstrating that PQM is an equilateral triangle.
Use this to prove that PQRM is a cyclic quadrilateral.

Part v: Let K be the midpoint of RC. By using a 180° rotation about K (or another
method) prove that NC = RM and that NC is parallel to RM.

AN
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December 1994

Mandelbrot Competition

Division A Round Two Team Test

Facts: The Fibonacci numbers are a remarkable sequence of integers which begin 1, 1. W
2, 3,5, 8, ...; the first two terms in the sequence are both 1 and each subsequent term
is obtained by summing the two terms immediately preceding it. A more concise way to
define the Fibonacci numbers is to use a recursive definition. Let F,, be the n*® Fibonacci
number. Then F} =1, F, = 1, and F,,;; = F,, + F,,_; for n > 2. There is a formula for F,
which is useful in proving identities involving Fibonacci numbers. Let r = (1 4+ v/5)/2 and
s = (1 —+/5)/2 be the two roots of the polynomial 22 — 2 — 1. Then the formula is

rm _ "

F,=
V5

Note that »+ s =1 and rs = —1.
If m and n are integers expressible as a sum of two squares then their product mn can
also be so written, because of the identity (a® + *)(c® + d?) = (ac + bd)? + (ad — bc)?.

%
. . . . h
Setup: In this team test we will consider the following question: for which positive integers
a, b, and c are ab— 1, ac — 1, and bc — 1 all perfect squares? In other words we are looking
for solutions to the Diophantine equations
ab—1 = x°
ac—1 = ¢? (0.1)
be—1 = 22
The adjective “Diophantine” means that we are only interested in integer solutions.
\ %
4 N

Problems:

Part i: Show that for n > 1 choosing u = Fy,_1, b = Fs,41, and ¢ = Fy,, 3 produces a
solution to (1).

Part ii: Recursively define two sequences of positive integers by setting x; = 0, x5 = 2,
Tpy1 = 6T, — Tn_1, and y1 = 1, Yo = 3, Yny1 = 6Yn — Yn_1. Prove that y2 = 2z2 + 1 and
that y,yn—1 = 22,Tn-1 + 3.

Part iii: Using the previous result find infinitely many solutions to (1) in the special case
where a =1 and b = 2.

Part iv: Now consider the special case a = 2. Show that suitable b and ¢ can be found if
one can produce solutions to the Diophantine equation (z2 + 1)(y? + 1) = (22)% + 4. Use
the identity in the facts section to find infinitely many solutions to this equation, and thus
infinitely many solutions to (1).

Part v: Using one of the above techniques or your own find infinitely many positive
integers a, b, and c such that ab+ 1, ac+ 1, and bc + 1 are all perfect squares.
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December 1994

Mandelbrot Competition

Division B Round Two Team Test

Facts: The Fibonacci numbers are a remarkable sequence of integers which begin 1, 1,
2, 3,5, 8, ...; the first two terms in the sequence are both 1 and each subsequent term
is obtained by summing the two terms immediately preceding it. A more concise way to
define the Fibonacci numbers is to use a recursive definition. Let F,, be the n*® Fibonacci
number. Then Fy =1, F; =1, and F,,;; = F,, + F,,_, for n > 2.

The Fibonacci numbers satisfy many identities, some of which you will demonstrate
below. There is a formula for F;, which is useful in proving such identities. Let r = (14+/5)/2
and s = (1 — v/5)/2 be the two roots of the polynomial 2> —  — 1. Then the formula can
be written

Note that r +s=1and rs = —1.

\
>

AN

Setup: In this team test we will consider the following question: for which positive integers
a, b, and c are ab— 1, ac — 1, and bc — 1 all perfect squares? In other words we are looking
for solutions to the Diophantine equations

ab—1 = z?

x
ac—1 = y? (0.2)
be—1 = 2%
The adjective “Diophantine” means that we are only interested in integer solutions.
N J
a )
Problems:

Part i: Verify the formula for F,, given above for n = 1, 2, and 3. Using this formula
prove that an_1F2n+1 —-1= F22n

Part ii: In the same way show that Fy, 1 Fb, 3 — 1= F2, +1- Conclude that for n > 1
letting a = Fy,_1, b = Fopt1, and ¢ = F, 43 yields a solution to (1).

Part iii: Now consider the special case where a = 2. Show that suitable b and ¢ can be
found if one can produce solutions to the Diophantine equation (z2+ 1)(y? + 1) = (22)?+ 4.
Part iv: Verify the identity (z° + 1)(y? + 1) = (zy + 1)2 + (z — y)2. Use this identity to
find infinitely many solutions to the equation in part three, and thus infinitely many
solutions to (1).

Part v: Using one of the above techniques or your own find infinitely many positive
integers a, b, and c such that ab+ 1, ac+ 1, and bc + 1 are all perfect squares.
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January 1994

Mandelbrot Competition

Division A Round Three Team Test

Facts: A polyhedron is the three dimensional analogue of a polygon. It is a solid object \
in space bounded by polygonal faces which meet one another at edges and vertices of the
polyhedron. Some familiar examples of polyhedra are cubes and pyramids.

Given a finite number of points in space we can define a subset of these points called
their conver hull Intuitively, if one were to let a large balloon enclosing all the points slowly
deflate it would eventually stretch taut about exactly those points in the convex hull. We
will call the resulting solid the outer polyhedron.

Let v, e, and f denote the number of vertices, edges, and faces of an arbitrary polyhedron.
Then v + f = e + 2; this equation is known as Euler’s formula. J

Y

Setup: In the following problems we are given six points
in space, no four of which lie in the same plane. Label the
points A through F and consider triangles ABC' and DEF
in space. We say these two triangles are linked if and only
if exactly one of the edges AB, AC, or BC intersects the E C
interior of ADEF (or vice versa). The picture at the right g
illustrates linked triangles. F

On this team test we will consider a surprising theorem which states that one can always
divide the six given points into two groups of three points in such a way that the triangles
formed by the two groups of points are linked.

N

%
)
Problems:

In the first four parts we will assume that the convex hull of the given points consists of all
six points, so that the outer polyhedron has six vertices.

Part i: Show that all the faces of the outer polyhedron are triangles. Combine this fact
with Euler’s formula to show that f = 8 and e = 12.

Part ii: Let v4 denote the number of edges of the outer polyhedron having A as an
endpoint, and similarly define vg, ..., vp. Outline an argument to show that it is
impossible to have vy = vg = v¢ = 5 and vp = vg = vp = 3.

Part iii: Using the previous part conclude that some vertex lies on exactly four edges of
the outer polyhedron. Let A be the point on four edges, say edges AB, AC, AD, and AE.
Label the points so that the edges occur around point A in the order just listed. Show
that either B and F'D or FC and FFE are edges of the outer polyhedron.

Part iv: Assume that F'B and F'D are edges of the outer polyhedron. Argue that AF
intersects the interior of ACBE or ACDE and find, with proof, a pair of linked triangles.
Part v: Using similar methods prove the theorem when five points are on the convex hull
and the sixth is in the interior of the outer polyhedron.
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January 1994

Mandelbrot Competition

Division B Round Three Team Test

Facts: A polyhedron is the three dimensional analogue of a polygon. It is a solid object
in space bounded by polygonal faces which meet one another at edges and vertices of the
polyhedron. Some familiar examples of polyhedra are cubes and pyramids.

Given a finite number of points in space we can define a subset of these points called
their conver hull. Intuitively, if one were to let a large balloon enclosing all the points slowly
deflate it would eventually stretch taut about exactly those points in the convex hull. We
will call the resulting solid the outer polyhedron.

Let v, e, and f denote the number of vertices, edges, and faces of an arbitrary polyhedron.
Then v + f = e + 2; this equation is known as Euler’s formula.

Y

4
<
Setup: In the following problems we are given six points
in space, no four of which lie in the same plane. Label the
points A through F' and consider triangles ABC and DEF
in space. We say these two triangles are linked if and only
if exactly one of the edges AB, AC, or BC intersects the E C
interior of ADEF (or vice versa). The picture at the right g
illustrates linked triangles. F

On this team test we will consider a surprising theorem which states that one can always
divide the six given points into two groups of three points in such a way that the triangles
formed by the two groups of points are linked.

Y

AN

Problems:

In the first four parts we will assume that five points, say A through F, are in the convex
hull. Thus the outer polyhedron has five vertices with point F in its interior.

Part i: Show that all the faces of the outer polyhedron are triangles and deduce that
e=23f/2.

Part ii: Using Euler’s formula show that f =6 and e = 9. Argue that one of the vertices
of the outer polyhedron is the endpoint of only three edges of the outer polyhedron.

Part iii: Assume without loss of generality that A is the vertex on only three edges; say
AB, AC, and AD. Show that AE must lie inside the outer polyhedron but EB, EC, and
ED are all edges of the outer polyhedron.

Part iv: Argue the AF must intersect the interior of one of the triangles BCF, BDF, or
CDF. Assume without loss of generality that AE intersects ABDF'. Prove that triangles
ACE and BDF are linked.

Part v: Now prove the theorem if the convex hull consists of only points A through D, so
that the outer polyhedron is a tetrahedron containing F and F in its interior.

/
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March 1994

Mandelbrot Competition

Division A Round Four Team Test

Facts: We review three of the most common points associated with a triangle ABC. The
angle bisectors are concurrent at the incenter, usually denoted I. The incenter is equidistant
from all three sides and hence is the center of the inscribed circle. The medians (segments
joining a vertex to the midpoint of the opposite side) are concurrent at the centroid G. The
triangle with the midpoints as vertices is called the medial triangle. Finally, the altitudes
are concurrent at the orthocenter H. The triangle with the feet of the altitudes as vertices
is known as the orthic triangle. L
Recall the theorem on angles inscribed in circles. If L, M, and N are
points on a circle as shown, then ZLMN = %L’N That is, an inscribed @ N
angle equals one-half the measure of the subtended arc. M

Y

Setup: In the diagram, I is the incenter of triangle ABC. Lines
through A, B, and C are constructed perpendicular to lines 1A,
IB, and IC respectively. These three lines form triangle DEF as
labeled in the diagram. The circumcircle of AABC' intersects the
sides of ADEF again in points A’, B’, and C’ as indicated to the
right. The goal of this team test will be to show that AA’B'C’
is the medial triangle of ADEF and that AABC is the orthic
triangle of ADEF. You may use the diagram exactly as it is pictured; in particular you
can assume in your arguments that the points A, A’ C’, C, B’, and B occur around the
circle in the order pictured.

Y

k the orthic triangle of ADEF.

/
<
Problems:

For all the computations in the following problems find the desired angle or arc measure in
terms of the measures of £A, ZB, and £C. Here ZA means ZBAC and similarly.

Part i: Compute the measures of arcs AC'and AC.

Part ii: Continue the work of the previous part by computing the measures of arcs

AC', C'C, CB', B'B, BA, and AA'.

Part iii: Calculate the measures of ZA', 2B, 2C’, 2D, £E, and £F. As before /A’
stands for £B'A'C’, £D refers to £EDF, and similarly.

Part iv: Show that FA'C'B’ is a parallelogram. Using such parallelograms show that
ANA'B'C" is the medial triangle of ADEF.

Part v: Prove that A, I, and D are collinear. By the same reasoning B, I, F and C, I, F
are collinear. Show that I is the orthocenter of ADEF and consequently that AABC is
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March 1994

Mandelbrot Competition

Division B Round Four Team Test

Facts: We review two of the most common points associated with a triangle ABC. The
angle bisectors are concurrent at the incenter, usually denoted I. The incenter is equidistant
from all three sides and hence is the center of the inscribed circle. The medians (segments
joining a vertex to the midpoint of the opposite side) are concurrent at the centroid G. The
triangle with the midpoints as vertices is called the medial triangle. L
Recall the theorem on angles inscribed in circles. If L, M, and N are
points on a circle as shown, then ZLMN = %LTV That is, an inscribed @ N
angle equals one-half the measure of the subtended arc. M

Y

Setup: In the diagram, [ is the incenter of triangle ABC'". Lines
through A, B, and C are constructed perpendicular to lines I A,
IB. and IC respectively. These three lines form triangle DEF as
labeled in the diagram. The circumcircle of AABC intersects the
sides of ADEF again in points A’, B’, and C' as indicated to the
right. The goal of this team test will be to show that AA’B'C" is
the medial triangle of ADFEF. You may use the diagram exactly
as it is pictured; in particular you can assume in your arguments that the points A, A’, ',
C'. B’, and B occur around the circle in the order pictured.

g

%
<
Problems:

For all the computations in the following problems find the desired angle or arc measure in
terms of the measures of ZA, «B, and ZC. Here ZA means ZBAC and similarly.

Part i: Show that AC'= 180° — £C.

Part ii: Using the previous result compute the measures of arcs CC'and A'C'.

Part iii: In the same manner calculate the measures of arcs A'B’and B'C". Thus deduce
the measures of angles £A’, ZB’, and £C’, where £ZA’ refers to Z«B’A'C" and similarly.
Part iv: Show that FA'C'B’ is a parallelogram.

Part v: Using parallelograms such as the one from part iv, show that AA’B’C" is the
medial triangle of ADEF.
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Division A Round Five Team Test

Mandelbrot Competition

April 1994

ﬁ

Facts: A generating function is a way of encoding a sequence of numbers into an algebraic

expression. If {ao, a1, az,...} is our given sequence of real numbers then the corresponding

generating function is f(t) = ao + a1t + ast®> + ---. On this team test it is enough to

understand the following simple example. We will compute the generating function for the

sequence {1,1,1,1,...}; by definition it is f(¢) = 1+t + 2+ t3 + ---. This infinite sum is

a convergent geometric series (when [t| < 1) with first term 1 and common ratio ¢, yielding
1

the closed form expression f(t) = 7.

W

Y

Y

Setup: An equation such as 2x+ 3y = 17 has only a finite number of solutions if we require
both z and y to be nonnegative integers. In this example there are exactly three solutions.
One of them is x = 1 and y = 5 which we can also state as (x,y) = (1,5). Using this
notation the other solutions are (4,3) and (7,1).

Consider the following equations for some given integer k > 1.

r+3y=2k—-1, 3x+5y=2k-3, ..., (2k—Dx+2k+1y=1.

Each equation has a certain number of solutions in nonnegative integers (x,y) as illustrated
above. Note that we are examining each equation separately; these are not simultaneous
equations. In this team test we will prove that the total number of solutions, obtained by
adding up the number of solutions for each individual equation, is exactly k.

AN

Problems:

Part i: Write out the seven equations for k = 7. Compute by hand the total number of
solutions and verify the claim made in the setup section.

Part ii: Argue that the number of solutions to the equation x + 3y = 2k — 1 is the same
as the coefficient of t?*~! in the product (1 +¢ +#2+t3+ - )1 + 3+t +°+---).
Part iii: Show that for a given k the total number of solutions to all the equations listed
in the setup section is the same as the coefficient of ¢2*~! in the generating function

first term

(Ut )AL+ )+ + 4 )+ ) H A+ 4 )T+ T4 ) 4
first two terms

Part iv: We will now find a closed forgn ex;z)reQSSion for the sum displayed above. Show
that the sum of the first n terms is (= 5wy
Part v: As n approaches infinity the partial sums found in the previous part converge to

the quantity m Since we have merely rewritten the sum obtained in part iii the
total number of solutions is still the coefficient of t**~!. By expanding 1/(1 — t) and
1/(1 —t?) in geometric series show that this coefficient is equal to k, completing the proof.

D%
<
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April 1994

Mandelbrot Competition

Division B Round Five Team Test

Facts: A generating function is a way of encoding a sequence of numbers into an algebraic

expression. If {ag,a1,az,...} is our given sequence of real numbers then the corresponding

generating function is f(t) = ag + ait + ast? + ---. On this team test it is enough to

understand the following simple example. We will compute the generating function for the

sequence {1,1,1,1,...}; by definition it is f(t) =1+t +#>+ ¢+ --.. This infinite sum is

a convergent geometric series (when |t| < 1) with first term 1 and common ratio ¢, yielding
1

the closed form expression f(t) = 1.

Y
A

Setup: An equation such as 2z + 3y = 17 has only a finite number of solutions if we require
both x and y to be nonnegative integers. In this example there are exactly three solutions.
One of them is * = 1 and y = 5 which we can also state as (z,y) = (1,5). Using this
notation the other solutions are (4,3) and (7,1).

Consider the following equations for some given integer k£ > 1.

r+3y=2k—-1, 3z+5y=2k-3, ..., (2k—-1Dz+2k+1y=1.

Each equation has a certain number of solutions in nonnegative integers (z,y) as illustrated
above. Note that we are examining each equation separately; these are not simultaneous
equations. In this team test we will prove that the total number of solutions, obtained by
adding up the number of solutions for each individual equation, is exactly k.

Y
A

Problems:

Part i: Write out the seven equations for k = 7. Compute by hand the total number of
solutions and verify the claim made in the setup section.

Part ii: Argue that the number of solutions to the equation = + 3y = 13 is the same as
the coefficient of ¢! in the product (1 + ¢+t + 3+ - )1 + 3+t +¢° +-..).

Part iii: Show that for k£ = 7 the total number of solutions to all the equations listed in
the setup section is the same as the coefficient of ¢** in the generating function

first term

A

(T+t+--)A+24+ )+ +2 4+ )A+E+ )+ A+ P+ )A+tT 4+ )+
first tv;g terms

Explain why these two numbers must be equal rather than just calculating both of them.

Part iv: The sum of the first n terms of the above series is % Verify this

formula for n = 1 and n = 2. You will need the formula for an infinite geometric series.

Part v: The partial sums above converge to the quantity m Therefore we have a

closed form expression for the sum in part iii. Expand 1/(1 —t) and 1/(1 — t?) in
geometric series and show that the coefficient of ¢!3 in the product is k = 7 as desired.
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Divisions A and B Round One Team Test November 1994

A—Part 1 B—Parts iii,iv: The diagram which appeared on the team test is reproduced
below in various guises for your viewing pleasure. Depending upon where R is chosen on AB
point M will either lie to the right, left, or coincide with point R. In the following proofs we
will assume that M is to the right of R as pictured; all the results are valid and the proofs
similar in the other cases. c

We will prove that APQM is equilateral by showing that
PM = QM = P(Q. Consider triangles MAQ, PBM, and QCP.
For convenience we write AR = a and RB = b. By the given,
MB = AR = a, thus AM = b since AB = a + b. From the various
equilateral triangles we also find that AQ = a and PB = b. Because = ,
AB = AC = BC = a + b we deduce that QC = b and CP = a. R M
Fach of the vertex angles of AABC measures 60°. In summary, each of triangles M AQ),
PBM, and QCP has one side of length a, one side of length b, and an included angle of 60°.
Hence all three triangles are congruent, so PM = QM = PQ as desired.

Since APQM is equilateral, ZPMQ = 60°. But ZPRQ = 60° as well since both ZQRA
and £ PRB measure 60°, and these three angles together sum to 180°. Since R and M lie on
the same side of PQ, PMRQ is a cyclic quadrilateral by the theorem in the facts section.

A—Part ii B—Part v: Here is an elegant proof using rotations. Let O be the midpoint
of QP. The abundance of 60° angles shows that CPRQ and NPMQ are parallelograms:
each of these quadrilaterals has two 60° angles and two 120° angles. Since the diagonals of
a parallelogram bisect one another O must also the midpoint of CR and NM. Therefore a
180° rotation about O (also known as a half turn with center O) carries R to C' and M to N
and hence maps RM to CN. This half turn demonstrates that CN = RM since rotations
preserve length, and also shows that lines C'N and RM differ by a 180° angle, that is, are
parallel.

One can also attack this problem directly with the basic tools of plane geometry. The
overall strategy will be to prove that APCN = AQRM. We first note that PQN
and PQM are equilateral triangles with the common side PQ. Hence all the edges
of these two triangles are congruent; in particular PN = QM. We saw above that

N C CP = AQ, -nd AQ = AR since AAQR is equilateral; thus CP =
QR. Clearly QR | CB, so ZCPQ = /RQP. Both of the angles
LN PQ and £ZMQ P measure 60°, so we can subtract them from our

N
a 4‘ previous pair of equal angles yielding ZCPN = £RQM. By side-
A R M B

B

angle-side we conclude that APCN = AQRM. Hence CN = RM,
finishing the first part of the problem. We then simply observe that
LNCP = £/MR@ = 120° while ZPBM = 60° to conclude that
CN || RM since the adjacent interior angles formed by the transversal CB sum to 180°.
A—Part iii B—Parts i,ii: Since AARQ is equilateral we know that RA = RQ and
/ARQ = 60°. Therefore a 60° counterclockwise rotation about R carries @ to A. By the
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same reasoning this rotation carries B to P. Hence the rotation maps BQ to PA, proving
that BQ = PA. Using the fact that triangles PBR and PQN are both equilateral we can
apply the same argument as above to show that a 60°clockwise rotation maps @ to N and
B to R, thus taking @B to NR. Therefore QB = NR, and combining this equality with
the previous one we have shown that AP = BQ = NR.

A-Parts iv,v: We have seen above that ZPR() = 60°. Since the angles in a triangle
sum to 180° we find that ZPQR + ZQ PR = 120°. Since both of these angles have positive
measure, each of them must be less than 120°. This means that we can apply the statement
in the facts section which says that a point F' exists in the interior of triangle PQR with
/PFQ = /QFR = /RFP = 120°.

Since F' is in the interior of APQR we know that F' and A lie on opposite sides of (Q—I%)
We also know that ZQF R = 120° and that ZQAR = 60°, so these angles are supplementary.
Applying the theorem in the facts section we conclude that @, A, R, and F all lie on a single
circle; in other words F' lies on the circumcircle of AARQ). Precisely the same argument
shows that F' also lies on the circumcircles of triangles BPR and QPN.

And now for the exciting climax of the A team test: proving that the lines AP, BQ),
and N R are concurrent at the Fermat point of triangle PQR. In previous years we have
used Ceva’s theorem as our main tool for proving concurrency of lines; on this test we will
use another strategy — guessing the point at which all three lines meet and then proving
that this point indeed lies on all three lines. Our guess in this case is the Fermat point of
APQR; showing that it lies on the appropriate lines turns out to be very little work given
our preparations in the first four parts.

Since AQF R is a cyclic quadrilateral we deduce that ZAFR = ZAQR = 60°. We already
know that ZPRF = 120°, so ZAFP = 180°. In other words ZAFP is a straight angle, so
F lies on AP as we wanted. In the same manner F lies on BQ and RN as well, which
completes the proof that AP, BQ, and RN are concurrent at F.

) - (=

Divisions A and B Round Two Team Test December 1994

A—Part i, B—Parts i,ii: Verifying the formula given for F;, for small values of n is a
logical way to become accustomed to working with this definition involving r and s. It is
also good practice in avoiding careless mistakes! The computation for n = 1 is trivial. A
shortcut allows us to handily polish off the case n = 2. Using 7+s = 1 we find (r?—s?)/y/5 =
((r—s)/V5)(r+s)=F-1=1= F,, as desired. Or we can use the binomial expansion to
directly calculate F3 as
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— Lf[l+3\/_+3 \/_)2 (\/53)—(1—3\/5+3(\/5)2—(‘/5)3)]
= L[6V5+2(5V5)] =

s\

Let us verify that Fibonacci numbers provide solutions for small values of n. Whenn =1,
we have a = 1, b =2, and ¢ = 5, in whichcase ab—1 =1 = 1% ac— 1 = 4 = 22, and
bc—1 =9 = 3% So far so good. We next try n = 2, so that a = 2, b = 5, and ¢ = 13.
We find that ab—1=9 =32 ac—1 =25 = 5% and bc — 1 = 64 = 82, In every case we
obtained the square of a Fibonacci number. These observations lead us to conjecture that
Fon1Fony1 — 1 = F2, and that Fo,_Fony3 — 1 = an+1 for all n > 1. Establishing these
identities would complete the problem.

The formula F, = (r" — s™)/+/5 given in the facts section reduces the proofs of these
identities to a computation. The steps are shown below. Notice that r2 4+ s = (r + 5)? —
2(rs) = (1)2 — 2(~1) = 3.

F2n—1F2n+1—1 - F22n

(T.Zn-l _ 82n—1> (T2n+1 _ s2n+l> L (T,Zn o s2n>2
3 V5 B V5

Yo¥ = () M + %) + s —5) = 1
"= (-1)B)+s™-5) = %
1t — 24 ') :

The five equations above are all equivalent. Since the last equation is clearly an identity,
the first one is also. To prove that Fon_1Fonys — 1 = F2,.; we will need the fact that
4+ st = (r? + %)% — 2(rs)? = (3)2 — 2(=1)? = 7. Otherwise the steps are practically
identical to those above' the reader is invited to perform the calculation as an exercise

.....

sense to prove the statements by induction. We quickly find that the base cases work for
both claims: 12 = 2(0)2+1, 32 =2(2)2+1,and 3-1 =3 = 2(2-0) + 3. It turns out that each
of these statements depends on the other, but a neat double induction takes care of both
claims at once. So we assume that y2 = 222 + 1 and yYn_1 = 22,&n_1 + 3 for all n < k and
start experimenting. We find that

Vo1 = (6yc — Y1)’

36y — 12UYk—1 + Vi1

36(2x; + 1) — 12(2zpark_q +3) + 222, + 1
2(36x; — 1223251 +72_;) + 1

26z — Tr_1)? + 1

27,1 + 1.

This takes care of the first claim. Emboldened by our initial success we now compute
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YkriUk = (6Yk — Yr—1)Uk
= 6Yp — Yklk-1
6(222 + 1) — (2zxr_1 + 3)
= 2x3(6xr — Tp_1) +3

= 2xk+1xk + 3.

This completes the induction.

If a = 1 and b = 2 then our system of equations is reduced to 2 — 1 = z%, c— 1 = 2, and
2c — 1 = z2. Clearly we will choose z = 1. Combining the last two equations by eliminating
¢ we wind up with 22 = 2y? + 1, which pleasantly reminds us of all the work we had to do
in the previous part. Therefore we choose y = z,, and z = y,,, which means c = z2 + 1. In
summary, we have shown that a = 1, b = 2, ¢ = xi +1l,z=1,y=a,and 2 =y, is a
solution for all n > 1, so we have found another infinite family of solutions.

A—-Part iv B—Parts iii,iv: The idea behind this problem is to show that in the special
case a = 2, finding integer solutions to the system of equations 2b— 1 = z2, 2c — 1 = 32, and
bc — 1 = 2% is the same as finding integer solutions to the single equation (2% +1)(y? + 1) =
(2z)% + 4. Many schools demonstrated half of the link, namely, if we have a solution to the
first set of equations then

(22 + 1)(y? + 1) = (2b)(2c) = 4(2* + 1) = (22)* + 4,

so x, y, and z are a solution to the second equation. We are actually interested in the
converse, which is almost as straightforward. So suppose that z, y, and z are integers
satisfying (x%2 + 1)(y? + 1) = (22)? + 4. Note that if z is even then 22 + 1 is odd, while if
r is odd then two divides 2% + 1 but four does not. (Work this out if it is not immediately
obvious to you.) Since the right hand side is a multiple of four we need x and y to both be
odd. in which case b = (z? + 1)/2 and ¢ = (y* + 1)/2 are both integers. It is then easy to
check that b, ¢, x, y, and z are integer solutions to the first system of equations. (Do it.)

We proceed to find some solutions to the second equation. The identity (z*+1)(y%+1) =
(ry + 1)2 + (x — y)? is a special case of the one given in the facts section, and in any case it
is easy to verify. We see that

(ey+ 12+ (x—y)? = (2®y* +2zy+ 1)+ (2° —2xy+¢°) = 2y* +2° +y* +1 = (2®+ 1) (P +1).

Therefore we want to find solutions to (zy + 1)2 + (z — y)? = (22)% + 4. Both sides look
suspiciously similar at this point, so we exploit this fact by choosing x—y = 2 and zy+1 = 2z.
This can be done if  and y are both odd with x two greater than y. One way to write our
solution is * = 2t + 1, y = 2t — 1, and z = 2t2, as you can check. This yields an infinite
number of solutions, one for each value of ¢, and from our work above we know that each of
these solutions leads to an integer solution of the original system of equations.

A-Part v B-Part v: Any of the above methods can be modified to solve the system of
equations in the last problem. In this solution we will outline how to get started; you should
carry out the details as practice if any of these methods is new to you.
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For starters, one could prove that a = Fy,, b = Fonyo, and ¢ = Fy,44 is a solution using
the formula from the facts section. Alternatively, one could define sequences y; = 1, y, = 3,
Un = AYn—1—Yn—2 and 21 = 1, 20 = 5, 2, = 42,1 — 2n—2 and then prove that 3y2 = 2242 and
3YnYn-1 = Znzn_1+4 by a double induction. Finish by finding an infinite number of solutions
when a = 1 and b = 3. Another technique is to let a = 1 and then show that the system
of equations b+ 1 = x?, ¢+ 1 = 2, and bc + 1 = 22 has integer solutions exactly when the
equation (z2—1)(y*—1) = 22—1 does. Using the identity (z2—1)(y?—1) = (zy—1)?>—(x—1y)?
allows one to find solutions x =t + 1, y = t, and 2 = t2 + ¢t — 1 which correspond to a = 1.
b =12+ 2t, and ¢ = t? — 1. Several schools also found a set of solutions more elementary
than any of those above by defininga=t—1,b=1%t+ 1, and ¢ = 4t. Good work!

<{} < O
Divisions A and B Round Three Team Test January 1995

The type of mathematics encountered on this team test is intriguing because it combines
both geometry and combinatorics. On the one hand, our arena is three dimensional Euclidean
space and our polyhedra are geometric objects. However, certain aspects of these polyhedra
are independent of their particular shape or size. For example, a solid polyhedron with 30
edges and 12 faces and no holes (as described in the essay accompanying this team test) must
have 20 vertices. We can see this immediately from Euler’s formula, which is combinatorial in
nature since it only involves the number of vertices, edges, and faces. Imagine how difficult it
would be to prove this fact by considering all the possible geometric configurations involving
30 edges and 12 faces! For this reason the proof below is as combinatorial as possible, which
makes it shorter and more precise. The solutions for the A division test are contained within
cases one and two, while the B division answers comprise cases two and three.

THEOREM: Given six points in space, no four of which are coplanar, it is possible to divide
the points into two sets of three points each such that the triangles formed by using each set
of points as vertices are linked.

PROOF: The convex hull of the six points contains either four, five, or six points since at
least four vertices are needed to create a solid. We will consider each of these cases in turn,
but first note that in every case the faces of the outer polyhedron are triangles, because a
face of the outer polyhedron is contained in a single plane. A face with four or more vertices
would imply that these four or more points were coplanar, contradicting the hypothesis in
the setup section.

Case 1: We begin by assuming that the convex hull consists of all six points, which
means the outer polyhedron has six vertices. For the outer polyhedron denote the number
of vertices by v, edges by e, and faces by f. If we count the number of edges around all the
faces we obtain 3f, since all faces are triangular. Each edge is included twice in this count,
since each edge is part of exactly two faces, thus e = 3f/2. We have v = 6, so by Euler's
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formula we find
3f
vif=e+2 = 6+f="+2 = [=8§,

and therefore e = 3f/2 = 12.

The strategy for the next segment of the proof is due to Naperville North B
High School. Let v4 denote the number of edges emanating from vertex A,
and similarly for vg through vp. First note that if v4 = 5 then A must be F D
connected to every other vertex of the outer polyhedron since there are only A
five remaining vertices. The same is true of vertices B and C. Consider two C E

adjacent edges emanating from A, such as AB and AD in the figure to the
right. These two are edges of a face of the polyhedron, which must be a triangle by part i.
Thus BD is the third edge. in particular BD is an edge of the polyhedron. Since D, E, and
F are three of the five vertices joined to A two of them must be adjacent, say D and E. But
then D is connected to F as well as to A, B, and C, contradicting the fact that vp = 3.
Clearly 3 < vyg < 5 since at least three edges must meet at A to form a solid angle; in
addition there are at most five other vertices to which A may be connected. The same is
true for the numbers vg through vg. We also observe that

va+vp+vc+Up+vE+up=2=24

because in summing all the edges coming into each vertex we count every edge exactly twice
(each edge has two endpoints) and our polyhedron contains 12 edges. If no vertex lies on 4
edges then each v; is either 3 or 5. Consequently the only way for the above sum to equal
24 is by writing 3+ 3+ 3+ 545+ 5 = 24, which cannot occur by the previous part. Hence
some vertex lies on 4 edges, say A. Without loss of generality A is connected to B, C, D,
and E. Since vp > 3 and F is not joined to A it must be connected to at least three of B.
C. D, and F; thus to either B and D or C' and F by the Pigeonhole Principle.

Now we will explicitly use the convexity of the outer polyhedron.
Specifically, if AF is not an edge of the polyhedron then it must lie in the
interior. Therefore the part of segment AF near A lies inside the solid
angle at A which is composed of the tips of the two tetrahedra ACEB
and ACED. The segment can’t lie along plane ACE or else the four
points A, C, E, and F would be coplanar; so it lies inside one of these
two tetrahedra, say ACED. Finally, AF must extend beyond the base
of this tetrahedron or else F' would be in the interior of the polyhedron. Therefore AF
intersects the interior of ACDE. We now claim that triangles ABF and CDE are linked.
We have just shown that AF intersects ACDE, and as AB and F'B are edges of the polyhe-
dron they cannot possibly intersect ACDE, so by definition we have found a pair of linked
triangles. The other possibility is that AF lies inside tetrahedron ACEB, in which case we
would find analogously that triangles ADF and CBE were linked.

Case 2: In this case the convex hull consists of five points, so the outer polyhedron has
five vertices with the sixth point in its interior. Denote the number of vertices by v, edges
by e, and faces by f. If we add together the number of edges around each face we obtain 3/,
since each face has three sides. Every edge is included twice in this count, since each edge is
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part of exactly two faces. Combining these observations yields e = 3f/2. We are given that
v = 5, so by Euler’s formula we can deduce

vif=e+2 = b+f="+2 = [=

It now follows that e = 3f/2 = 9.

Note that every vertex must be joined to at least three other vertices by edges of the
outer polyhedron in order to form a three dimensional solid angle. Of course, no vertex is
the endpoint of more than four edges since there are only four remaining vertices on the
outer polyhedron. If every vertex were the endpoint of four edges we would have a total of
20 endpoints, or 10 edges altogether. This contradicts the fact that e = 9, so at some vertex
only three edges meet.

We assume that A is the vertex at which only three edges meet, say edges AB, AC, and
AD. Therefore AFE is a segment between two vertices of the outer polyhedron which is not
an edge. Since the outer polyhedron is convex this segment must lie in the interior. We just
noted that every vertex is the endpoint of at least three edges, and since AE is not an edge
E must connect to all of B, C, and D.

We can now deduce the general configuration of the five vertices. There are three edges
ending at each of A and E. Since e = 9 there are three edges remaining, which must be
BC, BD, and C'D. Clearly A and E cannot both be on the same side of the plane through
ABCD, for if they were either AE would be an edge of the outer polyhedron or one of A
and E would be within the outer polyhedron, contradicting what we know. Therefore the
outer polyhedron must appear as pictured below. A

The part of segment AFE near A lies inside the solid angle at A which
is composed of the tips of the three tetrahedra ABCF, ABDF, and
ACDF. The segment can’t lie along one of the faces of these tetrahedra,
such as AACF; or else four points would be coplanar, in this case the B D
four points A, C', E, and F. Therefore it lies inside one of these three c (
tetrahedra, say ABDF. Finally, AF must extend beyond the base of
this tetrahedron or else E would be in the interior of the polyhedron. =
Therefore AE intersects the interior of ABDF. We now claim that triangles ACE and
BDF are linked. We have just shown that AF intersects ABDF, and as AC and CFE are
edges of the outer polyhedron they cannot possibly intersect ABDF'| so by definition we
have found a pair of linked triangles.

D Case 3: The techniques employed in this case are reminiscent of

those above, so we will streamline the argument. Since the convex hull

E contains only four points the outer polyhedron must be a tetrahedron.

c We will assume that points E and F are in the interior of the tetrahedron.
B  Imagine drawing segments FA, EB, EC, and FED which subdivide the

A outer tetrahedron into four smaller tetrahedra. As before, point F' cannot
lie on any of the faces of these tetrahedra since no four points are coplanar. Suppose that
F lies in the interior of ABCE. In the same manner as the previous problem we see that
DF must intersect the interiors of one of the triangles ABE, ACE, or BCFE; suppose it
intersects AACE. We claim that triangles ACE and BDF are linked. We have just seen
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that DF intersects AACE. Segment BD cannot intersect AACE since BD is an edge of
the outer tetrahedron, and segment BF' likewise cannot intersect AACE as BF lies in the
interior of ABCFE while AACE is a face of this tetrahedron.

Notice that the arguments above are perfectly general; no matter in which tetrahedron
F was located, or what face of that tetrahedron was intersected by the segment joining F
to the opposite vertex, the same arguments would produce a pair of linked triangles. Only
the letters would change.

Just for fun, here’s another mind-bender for the stalwart problem solvers taking our
competition. Clearly it is impossible to draw two nonintersecting loops on the surface of a
sphere which are linked. However, it is possible to do so on the surface of a doughnut. How?

] - (=

Divisions A and B Round Four Team Test March 1995

A—Parts i,ii,iii B—Parts i,ii,iii: The key to this type of com-
putation is to find a useful angle which subtends the given arc.
For example, ZABC subtends AC. Therefore, by the theorem
on inscribed angles, we conclude that mAC = 2msABC , which
we write simply as mAC = 2m«B. Similarly we conclude that
mAC" = 2m/ACC'. In order to write this in terms of msA,
m<sB, and msC' we note that

mzACC' = 90° — mZACT = 90° — msC,

so that mAC' = 2(90° — sm«C) = 180° — msC. Since mZA + msB + msC = 180°
we can also write mAC’ = m£ZA + m£B. Using exactly the same reasoning we find that
mCA =msB +msC and mCB' = mZA + m«C. (Check these as practice.)

There are many ways to go about finding the remaining arc measures. We find im-
mediately that mAC = 2msB and mAB = 2m<C since angle 2B subtends arc AC' and
analogously for the second equation. Hence,

mCC" = mAC — mAC' = 2msB — (mLA +msB) =msB — mZA.
In the same manner mAA’ = ms/B —mzC and mBB' = msA—mzC. We can now calculate
mA'C' = mCA —mCC

(msB 4+ msC) — (msB — msA)
= mszA+m«C.

There are several equivalent answers which may include a summand of 180° or 360°. These
can be simplified to the ones given above by using the fact that mzZA+mzB+m«sC = 180°.



111

We can now use the above results to find the measures of other angles in the diagram.
Since «B'A'C’" intercepts arc B'C’ we discover that

msB'A'C = ImB'C' = 1((ms4B — msA) + (msA +msC)) = YmsB +msC),

where we broke arc B'C’ up into the smaller arcs CB’' and C'C’ which we had already
measured. One finds that msB’ = $(mzA + mzC) and msC’ = 3(m£A + m«B), a neat
symmetric result. As extra practice, try to obtain these last two equations for yourself.

We can again utilize our calculations from above to find m«D by recalling that the
measure of the angle formed by two secants meeting outside a circle is the difference of the
two intercepted arcs. In other words

msD = %((m/?@’ + mAA + mAB) — (mCB'))
— %(méA +msC+msB —msC 4+ 2msC — msA — msC)
= 2(msB+m«C).

A corresponding computation yields msE = 1(msA + msC) and msF = s(msZA+msB).
An alternative approach is to compute £D via triangle BC'D, since it is possible to calculate
angles £DCB and £DBC. Query: Do we arrive at the same expression?

A—Part iv B—Parts iv,v: Half of the work was completed in the previous section,
where we found that both of mzC" and mZF were equal to 3(m£A + m«B). We need only
show that the other pair of opposite angles in quadrilateral F'A’C'B’ are equal to conclude
that we have a parallelogram. Once again, those arc measures will do the job for us. Noting
that ZFA'C' = ZAA'C" we use the inscribed angle theorem to obtain

msFA'C = %(m/@ +mBB' +mCB' + mé’E”) = 2(msA + msB + 2msC).

In the same manner we find that mzFB'C’ = J(msA+msB+2m<C) after a little algebra,
so FA'C'B' is indeed a parallelogram. It can be shown that DB’A'C" and EA'B'C’ are also
parallelograms by using an argument analogous to the one just presented.

Up to this point we have been engaged in what is informally known as “angle chasing.”
Having pinpointed several parallelograms through chasing angles, we will now take advantage
of the fact that opposite pairs of sides of parallelograms are congruent. In particularly we
find that FB' = A’C’ and that DB’ = A’C’ from parallelograms FA'C'B’ and DB'A'C’
respectively. Thus DB’ = FB', so B’ is the midpoint of segment DF. (Who would have
guessed that we could have established a midpoint by chasing angles?) Similarly A" and C’
are the midpoints of EF and DE, demonstrating that AA’B'C’ is the medial triangle of
ADEF.

A—Part v: The solution to this problem relies on techniques developed on an earlier
team test involving cyclic quadrilaterals. Our strategy for showing that A, I, and D are
collinear will also be reminiscent of that test: we will prove that angle ZAID = 180°.

Consider quadrilateral DBIC. Angles zDCI and ZDBI are both right angles, and
therefore sum to 180°, which implies that DBIC is a cyclic quadrilateral. Consequently
/BID = £BCD, and we can compute m£BCD = 90° — %mLC as before. On the other
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hand, FAIB is a cyclic quadrilateral as well, which means that angles ZAIB and ZAFB
are supplementary, so that mzZAIB = 180° — msF = 180° — %(mZA + m«B). Therefore

mZAIB +msBID = 180° — 5(mZA + msB) 4+ 90° — imsC
= 270° — {(mzA+ msB 4+ mzC)
= 180°,

proving that A, I, and D are collinear.

The remainder of the problem follows quickly. By hypothesis IC is perpendicular to ED,
and since we have just shown that IC and FC are in fact the same line, we conclude that
FC is an altitude of ADEF. In the same manner DA and EB are also altitudes. Hence,
by definition, AABC is the orthic triangle of ADEF'. Finally, since I is the common point
to all the altitudes, I is the orthocenter of ADFEF| polishing off the last proposition.

<] - 9.2
Divisions A and B Round Five Team Test April 1995

A-Part i B-Part i: Here are the seven equations, along with all solutions in nonnegative
integers.

Equation Solutions
T+3y = 13| (1,4); (43); (7,2); (10,1); (13,0)

3x+5y = 11| (2,1)

Se+Ty = 9 |0

Tr+9y = 7 |(1,0)
9x+1ly = 5 |0
llz+13y = 3 |0
Bx+15y = 1 |0

The symbol @ stands for the empty set, meaning no solutions exist. There are a total of
seven solutions for k = 7, as predicted.
(14> 4+t 4+t°+ --) together longhand. A pattern appears after the first couple terms
which convinces us that the product will be

T+t+2+288 + 200+ 288 +3t5 + 3t + 33 + 4% + - - -

For example, the coefficient of ¢1* is 5 by continuing the pattern above. Since there were 5
solutions to the equation x + 3y = 13, the claim in part ii is true for k = 7.

However, there is another way of attacking the problem which gives some insight into why
these two numbers should be equal, and has the advantage of generalizing to complete part
iii as well. After a little tinkering it becomes intuitively clear that we get a t**~! term in the
product whenever a t* and t3% term are multiplied together with x + 3y = 2k — 1, so we're
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done. Now to just write this down in a coherent and rigorous manner... A useful strategy
when faced with such a dilemma is to establish a one-to-one correspondence between the
two sets being compared. We shall adopt this tactic in the proof as an illustration.

The coefficient of ¢2¢=! in the product (1+t+¢2+--)(1+t3+¢°+---) equals the number
of ways to choose a term from the first sum and a term from the second sum which multiply
to t2*~1 since the coefficients of all these terms are 1. We claim this number is the same as
the number of solutions in nonnegative integers to the equation z+ 3y = 2k — 1. For suppose
the product of t* and % is t2=1. Then t*t*° = t*+3 = {2~ which implies a + 3b = 2k — 1.
Thus (a,b) is a solution to our Diophantine equation. On the other hand, let (a,b) be a
solution of x + 3y = 2k — 1. Then clearly the terms ¢* and #3 multiply to t**=!. We have
succeeded in pairing each solution (a,b) with a pair of terms t* and t3® whose product is
=1, This is the desired one-to-one correspondence which proves our claim.

Using precisely the same reasoning we find that the coefficient of t?*~2 in the product
(143 +5 4. )(1 + >+ 1%+ - ) equals the number of solutions in nonnegative integers
to the equation 3x + 5y = 2k — 3. This is clearly the same as the coefficient of t**~! in the
product t3(1 4+ ¢ + % 4+ --)(1 + t5 + ¢ + ...}, since multiplying by t? just shifts all the
coefficients over two places. In the same way, the number of solutions to 5z + 7y = 2k — 5
equals the coefficient of t*~1 in the product t4(1 + >+ ¢19 + -- )1 +¢t" +t" + ---), and
so on. The reason we shift the positions of the coeflicients around with factors like 2 and
t* is to shift all the coefficients we are interested in onto t?*~!. Therefore when we add all
the terms of the generating function together, the total number of solutions will be exactly
the coefficient of ¢2*~1. Note that all the terms in the generating function beyond the k"
don't contribute to t>*~! because the power of ¢ in those terms is at least t**. To see these
arguments work out concretely, substitute 7 for k everywhere in the last two paragraphs.

A—Part iv B-Part iv: To begin we write the first two terms in closed form by summing
the convergent geometric series. We know that 14+t +¢*+1¢°+--- = 1. Replacing t by ¢’
or t° we also find that

!
1 —t5

T+ 4+t +¢° .. = and  1+t°+t0 4% 4. ..

1—¢3

Therefore the first term equals Wll—ts‘)’ which is what the given formula predicts for n = 1.
Using the above closed form expressions we can add the first two terms to obtain

1 t2 1= (1)
I-0(-F) (-0 -0) (-90-&)1-r)
14+¢2 -2 —1°

1-t)(1-=3)(1—t5)
(1+tH)(1 —t%)

(I —t)(1 —3)(1 — t3)
1+ 2

(1-t)(1-t5)

which matches the given formula for n = 2.
The general formula can be established by induction. The base case was just demon-
strated. Now suppose that the formula holds for the sum of the first n terms. Adding the
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(n + 1)* term gives us the sum of the first n + 1 terms. The resulting expression can be
simplified as follows

1 t2 . 2n—2 t2n
formula + (n + 1)* term = Rl +
(1 — t)(l — t2n+1) (1 _ t2n+1)(1 — t2n+3)
1+ 4+ +t27272)(1 — 213) 4 t27(1 — 1)
(1 =) — 2 H)(1 - ¢2n43)
(14124 o 412072 o g20) — (¢20F] 4 2043 oL pind])
(1 — t)(1 — g2rH1)(1 — 2n+3)

(1 . t2n+1)(] + t2 R t2n—2 + t2n)

(1 _ t)(l _ t2"+1)(1 _ t2n+3)
(I+82 4+t 4 12

A —6)(1 -3y

which is exactly what the formula predicts for the case n+1. Hence we are done by induction
on n.

Students at Vestavia Hills high school discovered another neat method for proving this
formula using a telescoping sum. Here is a hint: show that the n'" term can be written

1 1 1
t3—t (1 _t2n+1 - 1_t2n—1)'

A—-Part v B-Part v: Several schools demonstrated that the partial sums converged to
the quotient shown. This wasn’t intended to be part of the question, but the reason is not
a great mystery. As m — oo the numerator turns into the series 1 + t2 4+ t* + - -, which
equals 1= since it is a convergent geometric series. The (1 — ¢) in the denominator stays
put since it doesn’t involve n, and the term (1 — ¢?**!) tends to 1 since for |t| < 1 we know
that t2"*! — 0 as n — oo.

To find the coefficient of ¢'* we must expand the fraction into a product of infinite series:

1 1

—— —— =14t + P+ ) A+ ).
1—t 1—¢2

At this point one can multiply the series together and discover directly that the coefficient
of t'* is indeed 7. A clever way to conclude is to use the reasoning from part ii in reverse
by arguing that this coefficient is the number of solutions (with nonnegative integers) to the
equation x + 2y = 13. It is simple to list these solutions; they are (13,0), (11,1), ..., (1,6),
for a total of 7 solutions. In general the coefficient of %~! in the above product will be the
number of solutions (in nonnegative integers) to the equation x + 2y = 2k — 1. These are
(2k — 1,0), (2k —3,1), ..., (1,k — 1), for a total of k solutions, as surmised.

4
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questions. For more information, see Convex hull, 91, 97

the solution for that test. Cyclic quadrilaterals, 25, 47, 93
Degree of a polynomial, 45

(’;), 4, 43, 75 Diophantine equations, 49, 95, 101
Divisor, 7

Altitudes, 22, 99 Domain, 6

AM-GM, 5, 45 Double induction, 105

Angle bisector, 3, 22, 69, 99

Angle bisector theorem, 80 Equilateral triangles, 93

Approximation by rationals, 24 Equivalent systems, 49
Euler’s formula, 91, 97

Base three, 24 Expected value, 67

Binet’s formula for F,, 95

Binomial identity, 4 Factorial, 4, 43, 67
Fermat point, 93

Cauchy-Schwarz, 41, 87 Fibonacci numbers, 95

Centroid, 99 Fractional part, 24

Ceva’s theorem, 3, 22, 69 Function, 6

trig form, 22 of complex variables, 81

Circumcenter, 22, 47
Circumcircle, 99

Coefficients in terms of roots, 56
Collinear points, 99

Geometric continuity, 19
Geometric series, 101
Generating function, 101

Combinations, 4, 43, 75 Half-turn, 73

Combinatorial geometry, 39 Homothecy, 84

Concurrency 3, 22, 69, 93

Concyclic points, 47 Identically equal polynomials, 45
Construction, 65, 73 Incircle, 3
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Incenter, 3, 22, 99

Inequalities
arithmetic-geometric mean, 5, 45
Cauchy-Schwarz, 41
reversibility of, 12

Infinite descent, 27

Inner circle, 73

Inscribed angles, 25, 99

Inverse of a function, 15

Law of sines, 22
Linked triangles, 97
Locus. 25
Logarithms, 24

Magical set, 7
primitive, 7
Max of a set, b
Max min, 5
Medial triangles, 43, 99
Median. 99
Min of a set, 5
Min max, 5
Minimization principle, 39

Natural numbers, 6
Noncollinear points, 39, 43

One-to-one and onto, 6
Orthocenter, 22, 99
Orthic triangle, 99

Outer circle, 73

Outer polyhedron, 91, 97

Pancake theorem, 19
Perfect number, 7
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bisecting, 23
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Power of a point theorem, 69
Powers of three, 24

Proper divisor, 7
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Radii, 3

Range, 6

Rotation. 47, 94
Recursion, 67

Recursive definition, 71, 95
Relaxing a constraint, 66
Reversibility (of steps), 12

Semiperimeter, 10

Smooth, 19, 23

Smooth convex figure, 19, 23

Solid geometry, 91 -

Squares
circumscribed about figure, 23
remainders mod three or four, 21
sum of two squares, 21, 95

Square set, 21

Sums of powers of integers, 49

Sylvester’s theorem, 39

Symmetric function, 71

Tangent, 3, 23
Tetrahedron, 91
Trigonometry problems, 22, 41, 71

Vector proof of Cauchy, 51
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